

Contribution ID: 81

Type: Oral

Extending the Hoyle-state paradigm to ¹²**C**+¹²**C fusion**

Carbon burning is a key step in the evolution of massive stars, Type 1a supernovae and superbursts in xray binary systems. Determining the ${}^{12}C+{}^{12}C$ fusion cross section at energies relevant to these different astrophysical scenarios by extrapolation of direct measurements is challenging due to resonances at and below the Coulomb barrier.

A study of the ²⁴Mg(α,α')²⁴Mg reaction has recently identified several 0⁺ states in ²⁴Mg, close to the ¹²C+¹²C threshold, which predominantly decay by ²⁰Ne(g.s)+ α . These states were not observed in ²⁰Ne(α, α_0)²⁰Ne resonance scattering suggesting that they may have a dominant ¹²C+¹²C cluster structure. Given the very low angular momentum associated with sub-barrier fusion, these states may play a decisive role in ¹²C+¹²C fusion in analogy to the Hoyle state in helium burning. This demonstrates how nuclear structure is important to various aspects of nuclear astrophysics. Estimates of updated ¹²C+¹²C fusion reaction rates are presented based on contributions from these near-threshold 0⁺ states.

Primary author: JENKINS, David (University of York)Presenter: JENKINS, David (University of York)Session Classification: Poster Session

Track Classification: Poster Presentations