Liquid Detector Development

Water and/or Scintillator

Minfang Yeh

Hybrid Workshop, U. Penn., June 3-5, 2025

SNO Heavy Water Detector

- detectors
- ullet(AF350); water-soluble
- large detector

Dai et. al., Nucl.Instrum.Meth.A 589 (2008) 290-295

Effect of wavelength shifters in Cherenkov

Scarbostyril 124 (CS124) and Alexa Fluor 350 ~x3 increase in light (from low-λ Cherenkov); however, might not be feasible due to optical for a

SK: physics enhancement with gadolinium

Ongoing Gd-loading for HK

SRN detection improvement

Metal-doped Liquid Scintillator for neutrino physics and other frontiers since 2000

Water-based Liquid Scintillator (hybrid detection) Oil- vs. H₂O-like WbLS for different detection concepts

Yeh et. al., A new water-based liquid scintillator and potential applications, j.nima.2011.08.040.

- **Directionality** from Cherenkov \bullet photons.
- Low energy threshold from \bullet scintillation.
- **Particle ID** distinguishing particles ${\color{black}\bullet}$ using timing and pulse shape.
- High metal loading capability \bullet
 - Shares a similar scintillation mechanism with LS, as both rely on energy transfer from solvent excitation to dissolved fluors for light emission.

WbLS compared to LS

Factor	
Base material	Prin
Scintillator loading	Low
Large volumes feasible	Idea
Scalable	Che

Factor	
Flammability	Muo
Toxicity	Red
Environmental impact	Easi
Handling and storage	Less
Tranulling and Storage	pub

Cost

narily water (cheap, abundant)

v concentration (1–10%) reduces cost

al for kiloton-megaton detectors

eaper than oil-based LS for massive detectors

Safety

ch lower — primarily water-based (not combustible)

luced; less volatile organic compounds (VOCs)

ier spill containment and cleanup

s restrictive than LS (especially underground or in olic facilities)

We will review several liquid scintillator options in this talk

7

Energy Transfer Mechanism

Solvent, fluor & WLS dictate the detector responses

Molecule	chemical formula	abs. max.	em. max.
PPO	$C_{15}H_{11}NO$	303 nm	358 nm
PBD	$\mathrm{C}_{20}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}$	302 nm	$358 \mathrm{~nm}$
butyl-PBD	$\mathrm{C}_{24}\mathrm{H}_{22}\mathrm{N}_{2}\mathrm{O}$	302 nm	361 nm
BPO	$C_{21}H_{15}NO$	320 nm	$384~\mathrm{nm}$
p-TP	$C_{18}H_{14}$	$276~\mathrm{nm}$	338 nm
TBP	$C_{28}H_{22}$	$347~\mathrm{nm}$	$455~\mathrm{nm}$
bis-MSB	$C_{24}H_{22}$	$345 \mathrm{nm}$	418 nm
POPOP	$\mathrm{C}_{24}\mathrm{H}_{16}\mathrm{N}_{2}\mathrm{O}_{2}$	360 nm	411 nm
PMP	$C_{18}H_{20}N_2$	$295~\mathrm{nm}$	$425~\mathrm{nm}$

butyl-PBD could benefit LAB-based detectors

Christian Buck and Minfang Yeh 2016 J. Phys. G: Nucl. Part. Phys. 43 093001

Slow Scintillator (fluor/WLS) directionality & particle ID with good light yield

- Adjust conc. of flour and shifters (Guo et. al., j.astropartphys.2019.02.001)
- Utilize slow fluor and WLS (Biller et. al., j.nima.2020.164106)

Large Stokes Shifts emission beyond 450nm

Fluor/WLS	Absorption (nm)	Emission (nm)	Comment
DCM	470-500	600–650	Very large shift, red emission
Coumarin 6	430-450	500-530	Bright, efficient fluor
Nile Red	~520	~620-650	Solvent-sensitive
Bis-MSB	~345	~420-430	Standard secondary shifter
BODIPY	~400–500	520-600+	Customizable dyes
Oxazine	~600	~680-700	Red emission, niche use

- Potential need for dual wavelength shifters, a two-step WLS scheme • Impact on light-yield and optical properties Solubility and long-term stability in solvent

- Validation of spectral response and timing characteristics

Rayleigh & Mie Scattering λ(scattering)≤lcm

LiquidO/CLOUD Consortium

NoWaSH

NoWaSH: wax-based opaque-white liquid scintillator \rightarrow e.g. 98 wt.% solvent + 2 wt.% wax + primary and secondary wavelength shifters \rightarrow opaqueness through scattering without absorption (Mie scattering) \rightarrow particle-dependent morphology of confined light blobs:

name	CAS number	ID	wax type	CAS numb
LAB	67774-74-7	G	non-polar PE	9002-88-4
DIN	38640-62-9	Η	EBS	110 - 30 - 5
o-PXE	6196-95-8	0	oxidised PE	68441-17-8
PC	95-63-6	Q	paraffin	8002-74-2
xylene	1330-20-7	U	FT	8002-74-2
toluene	108-88-3	X	EBS	110 - 30 - 5

 \rightarrow high metal loading possible

Oil-like WbLS (DIN- & LAB-based)

- developed for near surface deployment within LiquidO/CLOUD consortium (UM, PSU, and BNL)
- Capability of loading metallic ions demonstrated at a few % (w) level

Number of channels triggered 20 10 5<u>└</u> 10 20

An opaque WbLS (oil-like) with high light-yield for self-imaging

R 1121-1

3D Opaque WbLS detector (3D-oWbLS)

short scattering length (~ mm) Typical detector with long scattering length

CPAD 2024 (Guang)

Large-scale 3D projection Calorimeter

Metal-doped (Water-based) Liquid Scintillators

PATH TO A KILOTON-SCALE DETECTOR

Cherenkov Photon Trajectories

1% (Gd)WbLS 30-ton BNL, BUTTON, ANNIE

- At 500nm, $\lambda_{scattering} \sim 50m$ and $\lambda_{absorption} > 60m$

Brookhaven

National Laboratory

• 127.6 +/-17.6 (stat.) +/-19.8 (syst.); from 1-ton testbed, published in JINST 2024

30-ton Demonstrator in 2024

✓ *commissioned in summer 2024*

phase-0 circulation system (50 GPM), heat-exchanger installation, and polishing loop (12 GPM)

first paddle-triggered muon events in water (06/05/24)

BNL30T today

executed in sequential injection modes from 0.35% to 1% WbLS with slow control system and Sequential Exchange Array only

19

1% WbLS (Eos)

- ~250 *ph/MeV*
- At 500nm, $\lambda_{scattering} \sim 10m$ and $\lambda_{absorption} > 30m$ (in process)

Eos: performance demonstrator

Approach: design, construct and operate an integrated testbed to demonstrate the performance of novel technology

Novelty / technology:

- Novel scintillating liquids water-based scintillator, slow scintillator
- Ultra-fast photon detectors novel 8" PMTs (200 8" PMTs: R14688-100, 900ps FWHM)
- "Quantum chromatic sorting": dichroicons for spectrally sensitive photon detection
- AI/ML-based analysis techniques
- Deployable sources for studies of vertex, energy, direction reconstruction & PID
- 36-fiber 4-wavelength picosecond laser light injection system for optical and timing calibration

Designed for flexible upgrade paths & to be redeployed at a neutrino source demonstrate viability of future applications

Sited on UC Berkeley campus, in Nuclear Engineering (NE) department

Eos concept paper published: JINST 18 P02009 (2023), https://doi.org/10.1088/1748-0221/18/02/P02009

Eos today

 1st WbLS injected in early 2025
 Cherenkov ring from scintillation demonstrated

 $\circ 2^{nd}$ WbLS injection in process

Deuterated Liquid Detectors A D₂O-based Liquid Scintillator (HbLS) Interaction channel for neutrons from SNS $\pi^+ ightarrow \mu$

			Cross section
Interaction	Channel	-Q(MeV)	$E_{\nu} = 10 \text{ MeV}$
			(cm^2)
$\nu + d \rightarrow \nu + n + p$	NC	2.224	1.10×10^{-42}
$\overline{\nu} + d \rightarrow \overline{\nu} + n + p$	NC	2.224	1.05×10^{-42}
$\nu_e + d \rightarrow e^- + p + p$	CC	1.442	2.69×10^{-42}
$\overline{\nu}_e + d \to e^+ + n + n$	CC (DIBD)	4.028	1.23×10^{-42}
$\nu_e + e^- \rightarrow \nu_e + e^-$	ES	0.	9.19×10^{-44}
$\nu_x + e^- \rightarrow \nu_x + e^-$	ES	0.	3.77×10^{-44}
$\overline{\nu}_e + e^- \rightarrow \overline{\nu}_e + e^-$	ES	0.	1.64×10^{-44}
$\overline{\nu}_x + e^- \rightarrow \overline{\nu}_x + e^-$	ES	0.	1.320×10^{-44}
$\overline{\nu}_e + p \to e^+ + n$	CC (IBD)	1.8	6.7×10^{-42}

Free neutrinos from Spallation Neutron Sources (COHERENT)

 $\mu^+
ightarrow e^+ +$

- Measure three neutrinos from pion decay-at-rest
- Measure sterile neutrinos
- Triple coincidence reducing background towards a near surface detector (IBD) & <u>cleaner</u> Cherenkov region (>450nm)
- A few liters of HbLS fabricated for evaluation (pub. in prep.)

lacksquare

Chauhan et. al., JCAP, 11:005, 2021

Neutrino flux from SNS

WbLS Lesson-learned

- Performance proven at multiple ton-scale prototypes; focusing on in-situ circulation system deployment (Sequential Exchange Array, Nanofiltration and Gd-water system). The 1%WbLS in BNL 30-ton has been stable with SEA only (over a month).
- Homogeneous mixing can be achieved, with careful engineer control, in a few hours after injection (observed in 1-ton and 30-ton scale).
- Sequential injection is a stepwise introduction of detector media; enabling modular commissioning and early physics data-taking before full detector deployment is completed (incremental validation of system components).
- WbLS is flexible with staged upgrades, such as from Cherenkov to various LS and/or metal loading. This supports a phased scientific program that physics output begins while further capabilities are still being deployed.

Summary

- Advances in timing resolution (e.g., LAPPDs, fast PMTs) and interference coating (e.g., dichroic filters) allow event separation from isotropic light.
- Opaque liquid scintillator creates a diffuse, high-contrast optical response. Scintillation light is confined to local photodetectors, enhancing topological reconstruction.
- Engineer scintillator mixtures, an optimization of secondary WLS, multi-fluor combinations, and heavy element loading, to custom-tailored light yield, emission spectra, and decay time with 3D readout for HEP optical detectors & scalable calorimeters.
- Hybrid WbLS is a cost-effective detection medium that enables simultaneous Cherenkov and scintillation light detection, with tunable light yield, timing, and spectral response. It is a promising technology for next-generation multi-physics and nuclear nonproliferation experiments.

26

