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2Overview

We would love to invite you to speak about the possible 
impact of AI/ML for future large, and/or novel neutrino 
detectors.

- workshop organizers

1. reconstruction 
2. simulation 
3. inference

I won’t be comprehensive, but I’ll try to give a 
sense of the state of the art in a few areas:

In all cases, the name of the game is low-level, 
high-dimensional analysis!



3Reconstruction

Integrating low-level information from multiple detectors

SOTA is transformers

I’ll explain an important special case: deep sets (1703.06114)

f(x) = NN2 (
N

∑
i=1

NN1(xi))
for processing variable-length point clouds  
(often the structure of particle physics data)
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What if simulation doesn’t look (enough) like data? 
see domain adaptation, weak supervision, …

point cloud in -> point cloud out 
(or for high-level reco, point cloud in -> set of numbers out) 5

FIG. 1. Learned JER distribution for the four models, com-
pared to the CMS 2011 baseline. The dataset is the same
as in Table I. On average, the PFN-PID exhibits 15% better
resolution (i.e. smaller values) than the CMS default.

the measured PFC momenta, along with the PIDs, con-
tain useful information for jet energy calibration that is
lost when only considering the total jet momentum.

In this paper, we presented an extension of the MINE
framework, the Gaussian Ansatz, capable of simultane-
ously performing frequentist inference, extracting Gaus-
sian uncertainties, and quantifying mutual information
between random variables. All of these tasks are per-
formed in a single training, with no additional postpro-
cessing. Using this ML framework, we were able to take
advantage of the full jet particle information in the CMS
Open Simulation to improve the measured jet resolution
by approximately 15%. Studies by the ATLAS collab-
oration have used sequential calibration on a handful
of observables to improve their resolution [56–58], and
the Gaussian Ansatz may allow for further improvements
by allowing for simultaneous calibrations of any number
of input features. We look forward to further develop-
ments in ML-based calibration and correlations methods
in HEP and beyond.

CODE AND DATA

The code for the general-use Gaussian Ansatz frame-
work can be found at https://github.com/rikab/
GaussianAnsatz. The code and data for the jet energy
calibration study, in particular, are available at https://
github.com/rikab/GaussianAnsatz/tree/main/JEC.
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See also many interesting 
particle flow articles like 

2410.23236 and 2101.08578 
(and tracking: 2103.06995) 
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Figure 1: Schematic architecture of the end-to-end, ML-based reconstruction chain for LArTPCs.

class. Two sequential graph networks are then used to first assemble shower objects and identify
primary fragments before aggregating particles into interactions and identifying their species.

The following sections detail the architectures of the network modules. Each stage of the reconstruc-
tion is trained and tested on the PILArNet dataset of 125280/22439 (train/test) rasterized 3D images
of size 7683 voxels capturing a realistic density of particle interactions in a 12 m3 volume of LAr [6].

2 Semantic Segmentation and Point Proposal

The first module in the reconstruction chain is designed to identify the abstract particle type of
each voxel [7] and the location of important points [8]. These two tasks share a common backbone
architecture called “Sparse U-ResNet”: a U-Net [9] – composed of a down-sampling encoder
and an up-sampling decoder extracting features at various scales, i.e. depth – where convolutions
have been substituted for ResNet blocks [10] implemented in the sparse convolutional network
(SCN) framework [11]. SCN makes deep convolutional neural network scalable to large 3D images
– including those encompassing the entire volume of a 10 kton LArTPC used in the DUNE far
detector [3] – as the computational complexity of sparse convolutions only increases with the number
of active voxels. For the segmentation task, the output layer predicts a score for each of the target
particle classes: electromagnetic shower, track-like, Michel electron, delta ray or low energy (LE).

Parallel to the U-shaped network, additional convolution layers are introduced at three spatial
resolutions to form the so-called Point Proposal Network (PPN) [8]. Inspired by Region Proposal
Networks [12], the first two PPN layers attempt to predict a positive score for voxels that contain a
ground-truth PPN point. Positive voxels form a mask that is then applied to the following PPN layers.
For each voxel that has been selected through these successive attention masks, the final layer uses
3⇥ 3 convolutions to predict the point positions relative to the voxel centers and their particle classes.

The left panel of figure 2 shows the semantic segmentation confusion matrix. All the classes are
identified with a high level of precision, with tracks and showers being classified with a voxel-wise
accuracy of 97.7 % and 99.5 %, respectively. This algorithm shows a similar performance to previous
results applying UResNet to 2D LArTPC images [13]. The largest source of confusion originates
from delta rays misidentified as either track points or low energy depositions. The former mistakes
can be explained by the overlapping nature of tracks and delta rays while the latter stems from
labelling ambiguities that will be addressed in future datasets.

Point proposals are reconstructed by applying the point aggregation procedure described in [8]. The
right panel of figure 2 shows the distributions of distance from a true label point to the closest
predicted point and vice versa. Traditional methods report 68 % of neutrino interaction vertex
reconstructed within 0.73 cm [14, 15]. On the related task reported here, the PPN locates 68 % of all
points within a radius of 0.10 cm, and 95.9 % of all points are found within 0.7 cm.

2

end-to-end in LArTPC 

2102.01033
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Can we reproduce Geant4 (+downstream) quickly?

Overview of methods, focused on sampling calorimeters,  
but applies generally: https://arxiv.org/abs/2410.21611

2410.21611

7

FIG. 6: Average e
+ Geant4 shower (top), and average

e
+ CaloGAN shower (bottom), with progressive

calorimeter depth (left to right).

FIG. 7: Average � Geant4 shower (top), and average �

CaloGAN shower (bottom), with progressive
calorimeter depth (left to right).

FIG. 8: Average ⇡
+ Geant4 shower (top), and average

⇡
+ CaloGAN shower (bottom), with progressive

calorimeter depth (left to right).

FIG. 9: Five randomly selected e
+ showers per

calorimeter layer from the training set (top) and the five
nearest neighbors (by euclidean distance) from a set of

CaloGAN candidates.

B. Shower Shapes

Electron and photon classification and energy calibra-
tion use properties of the calorimeter shower [64–67].
These same features can be used to quantitatively as-
sess the quality of the GAN samples. The list of features
used for evaluation is provided in Table IV in Appendix A.
The key physical quantity that governs the shapes of these
distributions is the number of radiation lengths X0 that
are traversed by the particle. By definition, X0 is the
distance an electron will travel before its energy is reduced
to 1/e on average. The equivalent distance for photons is
slightly further (by 9/7 [68]) and is set by the mean free
path for pair production. The transverse shower size is
also proportional to X0. For a brief review, see e.g. [68].

The 1-dimensional distributions for Geant4- and GAN-
generated samples are available in Fig. 12. Although the
sparsity levels per layer are only roughly matched, note
that, for the majority of the remaining variables, the GAN
picks up on complex features in the distributions across
several orders of magnitude and all particles types. The
unique features that pions exhibit, compared to the other
particles, make it unfavorable to train a single model for
multiple particle types.

Note that shower shape variables were not explicitly

1712.10321
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X ∼ 𝒩(μ, σ)

x = np.random.normal(mu,sigma) 

Z = np.random.uniform(0,1) 

x = sigma*Phiinv(z)+mu 

(Phiinv = inverse Gaussian CDF)

Now, can compute 
 and ∂/∂μ ∂/∂σ

We can then do: 
sim(μ0 + ϵ) ≈ sim(μ0) + ∂sim

∂μ ϵ

2208.02274
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putational bottlenecks and pitfalls to be addressed for
broader adoption of this tool.

II. SIMULATOR IMPLEMENTATION

A LArTPC is a detector with an applied electric field
across a volume of liquid argon. Deposition of energy
can cause ionization in the liquid argon, and the ion-
ization electrons drift under the influence of the electric
field to be measured as current in an electronics read-
out. Our simulator uses a detector configuration corre-
sponding to a module design for a DUNE LArTPC pro-
totype. The rectangular detector module has a size of
60 cm ⇥ 60 cm ⇥ 120 cm, and contains two back-to-back
LArTPCs. The electric field in each LArTPC is gener-
ated by an applied voltage di↵erence between each anode
and a cathode plane. The cathode plane is shared and lo-
cated between the two LArTPCs. The two anode planes
are parallel to the cathode plane on respective edges of
the detector volume. Both anode planes consist of a pixe-
lated charge readout called LArPix [19]. We define x and
y as the horizontal and vertical axes along the cathode
plane, with z corresponding to the drift axis. Resolution
of the LArPix readout in each dimension is determined
by the pixel pitch and time sampling frequency. The
LArPix pixel pitch is 4.4mm. The spatial resolution in
the drift direction is below 2mm.

The simulator developed for the DUNE LArTPC pro-
totype is called larnd-sim [18]. Energy depositions are
represented as line segments (“particle segments”) de-
fined by 3D start and end positions, (x, y, z), and an as-
sociated energy, E. The simulator models the production
of ionization electrons due to these energy depositions, as
well as the drifting of electrons to the pixel readout at
each anode plane. A current in the pixel readout can
be induced by charges approaching or being directly col-
lected on a given pixel. Each pixel is an independent
readout channel with its own setup for trigger thresh-
old and gain. Currents in the pixel readout are digitized
to analog-to-digital converter (ADC) counts before be-
ing read out. The location of induced current in the
pixel plane provides an x, y measurement. Timing in-
formation provides information on z. Magnitude of the
induced current (ADC counts) gives information on de-
posited energy.

We describe the details of the simulator in the following
stages corresponding to sequential physics processes: 1)
Charge quenching; 2) Electron drifting; 3) Current accu-
mulation; 4) Electronics simulation. We highlight several
of the physics models used in the simulator. A summary
of information about the simulator is presented in Fig. 1.

Charge quenching. In this stage, the simulator de-
termines the number of ionization electrons produced
given the energy deposition per particle segment, dE.
This number is given by

nelec =
dE

Wion
, (1)

Drifting

Quenching

Current

Electronics

Track segments ( )
dE
dx

Number of free 
electrons for drifting

Electron distribution 
at readout

Current induced on 
each pixel

ADC counts per 
pixel/time

Birks’ model ( , ), 
Electric field ( )

AB kB
�

Drift velocity ( ), 
Lifetime ( ), 
Transverse/

longitudinal diffusion 
( , )

vdrift
�

DT DL

nelec = dE
Wion

nfinal
elec = nrecomb

elec � e�tdrift/�

nrecomb
elec = �recomb � nelec

�recomb = AB

1 + kB

� � �
dE
dx

vdrift = � � �
�L,T = 2 � tdrift � DL,T

FIG. 1. Flow diagram of the simulator, highlighting inputs
and outputs of each stage (blue) as well as commonly cali-
brated model parameters (red).

where Wion = 23.6 eV is the work function, i.e., the av-
erage energy required to produce an ionized electron in
liquid argon [20, 21].
The ionized electrons may subsequently recombine

with nearby argon ions. The electron survival rate, de-
scribing the fraction of electrons which do not recombine,
depends on the applied electric field and the local charge
density. There are two commonly used recombination
models in modern LArTPCs: the Birks model [6] and
the modified box model [5], which yield similar results
for our uses. For this work, we primarily use the Birks
model to describe the process of electron recombination,
and the electron survival rate takes the form

↵recomb =
AB

1 + kB
E·⇢

dE
dx

, (2)

where E is the applied electric field, dE
dx is the energy

deposition per unit length, which gives the local charge
density, and ⇢ is the liquid argon density. AB and kB

are parameters of the Birks model and are typically fit
in conventional calibration procedures.
After recombination, the number of electrons is

n
recomb
elec = ↵recomb · dE

Wion
. (3)

Electron drifting. Energy depositions in the simula-
tor are represented using 3D spatial coordinates, (x, y, z).
For simulation of the readout, the position, z, along the

10

FIG. 9. Loss landscape in a 2D parameter space of electric field E and lifetime ⌧ , averaged across batches. The gold star labels
the target parameter values. The negative gradient, shown in the white arrows, points towards the loss landscape minimum at
the target. Five example fit trajectories, starting from a variety of di↵erent initial points (filled circles) are shown respectively
in di↵erent colored lines. All fits converge to the target parameter values (the gold star).

to anode), assuming the cathode and anode are perfectly
parallel planes. Deviations from this assumption, as well
as shrinkage of the detector under cryogenic tempera-
tures during operation, can shift E away from the nom-
inal value. Furthermore, the actual electric field across
the detector may not be perfectly uniform. However, this
is often a sub-leading e↵ect.

The electron lifetime ⌧ is commonly measured with a
muon control sample, which has relatively uniform dE

dx .
In order to fit ⌧ , the recombination model parameters,
AB and kB , and the electric field, E , are set to fixed
values.

The measurement of the longitudinal di↵usion coe�-
cient DL often uses a control sample of muons due to
their uniform detector signal. Nominally DL a↵ects the
signal extension in terms of drift time (width of the read-
out waveform). In order to extract DL, we need to sep-
arate out the e↵ects from drift velocity and drift time.
The electron lifetime and the electric field can both af-
fect the shape of the readout waveform, and therefore
need to be well understood. However, they typically are
not explicitly treated in DL measurements. The trans-
verse di↵usion coe�cient, DT , is usually extracted based
on DL, assuming a fixed value of the electric field and a
given electron mobility model µ(E , T ).

In these conventional approaches, the determination of
particular parameters is often done assuming fixed values
of the other parameters. In practice, di↵erent detector

processes can e↵ect the measured data in similar ways,
meaning that this assumption may cause incorrect re-
sults. This is demonstrated in Fig. 10, which shows that
if a bias exists in a model parameter which is fixed in the
calibration, other parameters of interest may converge to
biased values. In the figure, nominal values of the pa-
rameters are denoted by ✓nom. �down and �up are the
distances from ✓nom to the lower and upper boundaries of
the range shown in Table I. For each parameter respec-
tively, �✓ is the average of �down and �up. Each panel
shows the biases of the fitted parameter values in units
of �✓ resulting from a shift of one selected parameter to
its lower (blue) or upper (red) range in the fitting tar-
get while fixing that same parameter to its nominal value
during the fit optimization. All other parameters are set
to their nominal values in the target. In several cases,
fitted parameters deviate significantly from their target
values. Therefore, optimizing all detector parameters si-
multaneously is important for avoiding calibration biases
and achieving precision physics modeling.

A. Loss function

Optimization of fitting parameters requires the con-
struction of an appropriate loss function, L. The proper-
ties of this loss function have a significant impact on the
optimization. We describe several options and require-

2309.04639
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2411.02194
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FIG. 4. Two-dimensional Lund a and b parameter plane loss landscape for one-dimensional and sliced Wasserstein distances
over various dimensionalities of low and high-level observables, with the same grid and mini-batching as in figure 3.
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FIG. 1. The reweighting metrics defined in eq. 11 over the (a, b) parameter plane for the Model 1 and Model 2 base parame-
terizations denoted by the red dots. The green star denotes the ‘experimental’ or target parameterization. For both metrics,
values closer to zero imply better coverage and effective statistics.
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(8)

3 While not denoted explicitly in eq. 8, each array zi is zero-padded
to a fixed length. In principle, the series of rejections can be
stored with the random number seed used in the numerical algo-
rithm.

where nhi refers to the total number of rejections for
the ith fragmentation/hadron. Note that a string system
will fragment hadrons until its invariant mass reaches a
predetermined threshold (usually set at 1 GeV). When
this threshold is reached, a different function is used to
partition the remaining energy and momentum of the
system between the final two hadrons such that energy
and momentum is conserved and the left-right symmetry
of the Lund model is preserved. This function, called
finalTwo, can fail (roughly 10�15% of the time for a qq̄
string system with total energy of 50 GeV). Upon failure,
the previous hadronization event is discarded and the
hadronization routine is re-run on a reinitialized string.
For this technical reason, the hadron multiplicity Nh of
an event is not necessarily equal to the total number of
accepted z-values.

Because RSA utilizes reweighting to explore the model
parameter space, at least one set of events, generated
using a base parameterization ✓B ⌘ {a, b}B , is required
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A

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 2: In-distribution evaluation - distributions for jets that are statistically identical to the ones in the training
dataset. (a) - (f) are constituent level and (g) - (l) are jet-level. See the text for variable definitions.
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Point cloud generative model conditioned on a point cloud!

Fast, automatic, GPU-compatible, no ROOT, …
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SOTA is “simulation-based inference” (see 1911.01429)

What if our particle/nuclear physics simulations are not 
accurate enough?  Be careful (2109.08159).

Figure 8: Values of the log-likelihood test statistic C` as a function of signal strength `, representing only statistical
uncertainties (solid red for NSBI, dashed green for histogram analysis), compared with the values of the profile
log-likelihood ratio, representing both statistical and systematic uncertainties (dash-dotted red for NSBI, dotted green
for histogram analysis), evaluated on Asimov data generated with ` = 1. The histogram analysis is performed with a
fixed observable, log ?B/?(G |` = 1). The two NPs in this study are described in Section 3.3.

8 Conclusions and outlook

While NSBI methods have drawn interest for their potential to dramatically improve the sensitivity of
key analyses at the LHC, several open questions have remained regarding their application in a full-scale
LHC analysis. This work develops the necessary tools and concepts required to have a complete statistical
framework for NSBI at the LHC and addresses these open questions. The power and feasibility of the
method are assessed through an example use case: a simplified measurement of the off-shell Higgs
boson couplings in the four-lepton final states. This is an analysis with destructive quantum interference
between the signal and background processes, which makes the likelihood model non-linear in the signal
strength parameter and benefits from the power of NSBI methods. Comparisons with two histogram-based
methods illustrate the gains from the unbinned and parametrized nature of the NSBI method. Since this
demonstration was performed on a simplified version of the analysis that does not include all the relevant
physics processes and systematic uncertainties, the expected sensitivity shown does not reflect the expected
sensitivity of the full physics result.

The framework extends the standard statistical methodology employed at the LHC, transitioning to an
unbinned, multi-dimensional setting, capable of accommodating a large number of systematic uncertainties.
The paper also provides a list of diagnostics that can be used to understand and validate the performance of
the neural network classifiers and describes a method to build a robust test statistic needed for hypothesis
tests. It also describes the procedure to construct confidence intervals for unbinned analyses such as those
using NSBI. Computational challenges in evaluating and analyzing the test statistic are overcome with the
use of auto-differentiation techniques, which help profiling and computing of pulls and impacts.

24
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Likelihood-ratio 
“trick”
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for neutrino example, see T2K study in 2504.068572

compare its performance and relative advantages with
respect to IBU.

This paper is organized as follows. Section II briefly
introduces machine learning-based unbinned unfolding
with OmniFold. The T2K dataset used for numerical
results is described in Sec. III. Our methods for testing
di↵erent approaches are documented in Sec. IV. Numer-
ical results are presented in Sec. V, and the paper ends
with conclusions and outlook in Sec. VI.

II. UNBINNED UNFOLDING WITH
OMNIFOLD

Unfolding methods using neural networks and other
machine learning tools process continuous data and are
thus naturally unbinned [18–20]. As these tools can
also process high-dimensional feature spaces, unfolding
many observables simultaneously is readily accommo-
dated. Existing approaches are based on likelihood-ratio
estimation with machine learning classifiers [21–23] or are
based on direct likelihood-estimation with generative ma-
chine learning tools [24–36]. The last couple of years has
seen the first unbinned cross-section studies in ep using
H1 data [37–40] and in pp using data from LHCb [41],
ATLAS [42, 43], STAR [44, 45], and CMS [46, 47]. Since
all of the existing experimental results use the OmniFold
method, we focus on that technique here.

OmniFold is an iterative, two-step procedure that is
illustrated in Fig. 1. In the first step, the detector-
level simulated data are reweighted to match the ob-
served data. Then, these weights are ‘pulled back’ to
the particle level by assigning the weight obtained from
the detector level in the first step. Events that do not
pass the detector-level event selection are assigned the
average weight for a given particle-level phase space re-
gion either at the end of the unfolding or at each it-
eration (comparisons described below). This pull back
induces a new spectrum at particle level, but since the
detector response is stochastic, the resulting reweight-
ing is not a proper function of the particle-level phase
space. The second step of OmniFold reweights the start-
ing particle-level simulation to this induced simulation
from the pulled back weights. This weighting function
is a proper function of the particle-level phase space by
definition. One can then ‘push forward’ these weights to
the detector level and repeat the entire process. Iterating
a finite number of times is a form of regularization, and
there are a number of metrics that can be used to decide
when to stop. The final result of the unfolding is a set of
particle-level simulated events and a corresponding set of
event weights.

While the reweighting can be performed with any
method, the algorithm is unbinned when based on ma-
chine learning classifiers. Interpreting classifiers as like-
lihood ratio estimators, sometimes called the “likelihood
ratio trick”, is well-known in statistics [48, 49] and has
been frequently used in particle physics [50].
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FIG. 1: An illustration of the OmniFold method applied
to T2K data and simulation. Step 1 compares

simulated detector events to the data and provides a
reweighting of the detector-level events. Step 2
compares generator events against themselves to

provide reweighting of the true particle-level events.

III. T2K PUBLIC DATASET

This paper utilizes a public simulated T2K dataset
based on a previous analysis of T2K ND280 near detector
data [51], which was a measurement of charged-current
⌫µ events that produce zero pions in the final state (re-
ferred to as the CC0⇡ topology) on a hydrocarbon target.
The same dataset or subsets of it have been used in other
related T2K publications [6, 52, 53]. The public sim-
ulated dataset represents signal and select background
events in both truth and reconstructed space along with
associated systematic uncertainties for the flux, detector,
and neutrino interaction models. The simulated dataset
covers T2K runs 2, 3, 4 and 8 in neutrino mode beam run-
ning and contains events corresponding to 17.24 ⇥ 1021

protons on target, roughly a factor of 20 more than the
data statistics analyzed in Ref. [51]. The ND280 sim-
ulation uses the neut package [54–56] to generate neu-
trino interactions in the detector, geant4 [57] for par-
ticle propagation and energy deposition, and a custom
package to simulate the detector electronics response.
ND280 comprises a number of sub-detectors installed

inside the refurbished UA1/NOMAD magnet, which pro-
vides a 0.2 T field used to measure the charge and
momentum of particles. The inner tracker region of
ND280 uses three time projection chambers (TPCs) in-
terleaved with two plastic scintillator fine-grained detec-
tors (FGDs), and is surrounded by an electromagnetic
calorimeter. The FGDs each contain 1.1 tons of target
mass for neutrino interactions and provide tracking of
the charged particles coming from the interaction vertex,
while the TPCs provide momentum and particle identi-
fication. The dataset used here is focused on neutrino

13

FIG. 9: Unfolded CC0⇡ di↵erential cross sections as a function of the muon kinematics (pµ, cos ✓µ), compared
against the truth-level cross sections underlying the data. Each plot contains the di↵erential cross sections from a

specified range of the forward angle cos ✓µ. Error bars are the spread in results from 500 pseudo-experiments varying
systematic and statistical uncertainties, while the nominal result in each bin is the mean from those 500 unfolded
throws. Note that the highest momentum bin in each case extends up to 30 GeV, but is truncated in the plots for

readability.
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FIG. 2. Results of the OS bump hunt analysis, shown in the same format as Fig. 1. (a) After a cut on the BDT classifier, clear
peaks emerge in the SR above the SB-fitted background. (b) Noting the di�erent y-axis scale from Fig. 1b, the � significance
grows from 1.5‡ to well over 5‡ with CATHODE, especially with likelihood reweighting.

procedure to a “control” sample of SS dimuons, with
roughly half the number of events as the OS sample. A
doubly-charged resonance decaying to muons (�++ æ
µ+µ+) at ≥ 10 GeV is strongly constrained by precision
electroweak tests, such as the Z-pole width and running
of –EM [21]. Such a resonance is also ruled out by model-
specific searches for doubly-charged scalars [45, 46]. Thus,
we seek to verify that our procedure does not find a signal
in the SS channel where we expect there to be none.

In Fig. 1a, we show the dimuon mass spectrum after
various BDT cuts. As we impose stricter criteria on the
FPR (i.e. smaller fraction of background events passing
the cut), no significant peaks are observed in the SR.
We quantify this via the significance curves in Fig. 1b.
The cut-and-count significances (Step 4a) are plotted
as a function of the FPR, for both CATHODE and the
classical tests, and no method finds evidence of a localized
excess above 2.4‡. The ML-based likelihood reweighted
significance (Step 4b) is plotted as a horizontal line at a
modest 1.6‡. We conclude that our method successfully
avoids sculpting spurious signals.

For completeness, we perform two additional valida-
tions. First, we use a classifier trained on OS data to
look for resonances in SS data. We (successfully) do not
find a SS signal, which implies that a classifier trained on
(signal-containing) OS data does not sculpt peaks where
none exist. Second, we use a classifier trained on SS
data to look for resonances in OS data. There is indeed
a initial 1.6‡ � signal in the OS channel (as discussed
below), but we (successfully) do not elevate the signal

significance. We conclude that in order to reveal the �
signal, the BDT classifier must be able to learn nontrivial
correlations between auxiliary features, which are not
present in the SS control sample.

Opposite-Sign Search Results. We now present
search results in the OS channel for anti-isolated � æ
µ+µ≠ decays. In Fig. 2a, we show the dimuon mass
distribution after a sequence of BDT cuts. A modest
initial excess in the SR is visually amplified by cuts on
the classifier. The quantitative gains in signal significance
are shown in Fig. 2b. CATHODE achieves a maximum
significance of 5.7‡ at a 7.5% FPR working point, which is
increased to 6.4‡ with likelihood reweighting. By contrast,
none of the classical cuts surpass the nominal 5‡ discovery
threshold — cutting on the harder muon’s IP3D achieves
at most 4.1‡ significance. This demonstrates substantial
gains from using a multidimensional ML-based approach
compared to single-feature classical cuts. See the End
Matter for a study of multi-feature classical cuts.

To better understand how the BDT discriminates �-
like events from background, we can inspect the impact of
classifier cuts on the auxiliary features in the SR, shown
in Fig. 3. With more stringent FPR cuts, the BDT se-
lects events with moderate dimuon pT (¥ 60 GeV) and
small IP3Ds (¥ 10≠3 cm), similar to the phase space
selection in Ref. [25]. In essence, the BDT is attempting
to undo the e�ects of the initial anti-isolation condition
as best as it can to recover the � resonance. By focusing
on small impact parameters, the BDT is mitigating the
background from uncorrelated hadron decays. However,
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The latest AI tools are allowing us to utilize low-level detector 
signals holistically, without classical pre-processing.

I have not even 
mentioned AI for QA/

QC, experimental 
design, …

These are exciting 
opportunities and the 
barrier to entry has 
never been lower!
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16Introduction: generative models

A generator is nothing other than a function 
that maps random numbers to structure.

Deep generative models: the map is a deep neural network.
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GANs
Generative 

Adversarial Networks

NFs
Normalizing Flows

VAEs
Variational Autoencoders

Deep generative models: the map is a deep neural network.

Score-
based



18Introduction: GANs
Generative Adversarial Networks (GANs):  
A two-network game where one maps noise to structure 
and one classifies images as fake or real.

{real,fake}

G
D

D

noise

When D is maximally 
confused, G will be 
a good generator Physics-based 

simulator or data
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Variational Autoencoders (VAEs):  
A pair of networks that embed the data into a latent space 
with a given prior and decode back to the data space.

Introduction: VAEs

Physics-based 
simulator or data

DE

latent space

p(z|x) p(x|z)

Probabilistic 
encoder

Probabilistic 
decoder



20Introduction: NFs
Normalizing Flows (NFs):  
A series of invertible transformations mapping a known 
density into the data density.

F

latent 
space

F F F

Invertible transformations 
with tractable Jacobians

Optimize via 
maximum likelihood

p(x) = p(z) |dF-1/dx|p(z) p(x)



21Introduction: Score-based
Score-based 
Learn the gradient of the density instead of the probability 
density itself. 3

t=1t=0 t=0.75t=0.25

Forward diffusion (training)

Reverse-time diffusion (data generation)

FIG. 1. The score-based generative model is trained using a di↵usion process that slowly perturbs the data. Generation of new
samples is carried out by reversing the di↵usion process using the learned score-function, or the gradient of the data density.
For di↵erent time-steps, we show the distribution of deposited energies versus generated particle energies (top) and the energy
deposition in a single layer of a calorimeter (bottom), generated with our proposed CaloScore model.

minimized during training is:

1

2
Ep�(x̃|x)pdata

h
ks✓(x̃)�rx̃ log p�(x̃|x)k

2
2

i
. (4)

The advantage of this strategy is that we can directly
estimate the last term in Eq. 4, since:

rx̃ log p�(x̃|x) =
x� x̃

�2
⇠

N (0, 1)

�
(5)

The time component can be made explicit by rewriting
the loss function in Eq. 4 as:

1

2
EtEp(xt|x0)p(x0)

h
�(t) ks✓(x, t)�rxt log pt(xt|x0)k

2
2

i
.

(6)
The weighting function �(t) : R ! R ensures

the loss function has the same order of magnitude at
all times and is chosen to be inversely proportional

to E
h
krxt log pt(xt|x0)k

2
2

i
. When the drift coe�cient

f(x, t) is chosen to be an a�ne function of x, the result-
ing perturbation kernel is always Gaussian [58] and can
be chosen such that both mean and variance are known
in closed form, making Eq. 6 e�cient to compute during
training.

III. CHOICE OF DRIFT AND DIFFUSION
COEFFICIENTS

In this work we investigate three di↵erent choices of
drift and di↵usion coe�cients that result in perturbation
kernels that are easy to calculate in closed form. The
first SDE, initially proposed in [53], is defined as:

dx =

r
d[�2(t)]

dt
dw. (7)

The parameter �(t) = �min

⇣
�max
�min

⌘t
is defined with

�min = 0.01 and �max = 50 to ensure x(1) ⇠ N (0,�2
max)

is independent from x(0). Since the time-dependent vari-
ance of the resulting perturbation explodes when t ! 1,
this SDE is often referred to variance exploding (VE)
SDE.
The second SDE is a continuous version of the discrete

perturbation introduced in [54], defined as:

dx = �
1

2
�(t)xdt+

p
�(t)dw. (8)

The parameter �(t) = �min + t (�max � �min) with
�min = 0.1 and �max = 20 is used, resulting in x(1) ⇠

N (0, 1). The variance of this process is fixed to one when
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