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Introduction

Introduction
Context of these slides is R&D for “large optical neutrino detectors”
▶ Fully contained events (calorimetry)
▶ ∼ 4π holographic coverage (directionality)
▶ Think SNO/+, Super-/Hyper-K, Borexino, Juno, ...

We all dream of a hybrid detector...
▶ Distinguish between Cherenkov / scintillation photons to leverage

advanced reconstruction to address a variety of physics topics
▶ Next-gen reconstruction to improve physics reach
▶ Solars, supernovae, ν̄, δCP, 0νββ, ...

This talk: R&D measurements to support getting there
▶ Mostly WbLS based on LAB + PPO mixtures - plus gadolineum!
▶ German DIN-infused slow scintillator
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Introduction

R&D for hybrid optical detectors

Remember: we have to reconstruct the neutrino interaction from “hits”
▶ Energy, position resolution improves with # of hits
▶ Direction resolution improves with significance of Cherenkov hits

Cartoons from Michi Wurm
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Introduction

R&D for hybrid optical detectors at Berkeley
Local campaign making use of:
▶ Modern chemical synthesis techniques
▶ State-of-the-art photodetectors
▶ Novel spectral sorting technology

...to characterize and, hopefully, achieve high-purity Cherenkov selection

WbLS

of gadolinium into the WbLS has been tested and the results are
very promising. Current samples of �0.5% Gd in WbLS are available
for in-lab tests; however loading parameters for large-scale produc-
tion will require modification depending on the experimental
needs. Eventually a larger WbLS (with and without metallic ions)
demonstrator, at the scale of few tons, will be built for prototype-
studies of anti-neutrinos from a nuclear reactor.
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Fig. 4. Samples of water-based liquid scintillator samples illuminated by ultraviolet light. From left to right, samples are pure LAB based liquid scintillator, 10%-LAS loading

in water with 3 g/L PPO, 10%-LAS loading in water with 3 g/L Carbostyril-124, and pure water with 3 g/L Carbostyril-124. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Scintillation response from WbLS. The liquids were excited by external Cs137.
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Fig. 6. Fluorescence response from scintillator liquids. The liquids were excited by

250 nm laser with a fixed intensity and observed to produce the plotted radiation.

The red curve is for LAB with PPO and the blue is the WbLS with PPO (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Introduction

CHESS of yesterday
CHESS proper was an apparatus to demonstrate

* Cherenkov and Scintillation Separation *

Originally consisted of 12+2 H11934s, 1 R7081, and 6 veto PMTs
▶ CAEN V1742s, V1730s
▶ Have since upgraded with additional 12+1 H11934s
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Introduction

CHESS of today
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Scintillation yields

Scintillator light yields
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Example single-PE pulse
Lognormal fit

Birks says mean photon production along a trajectory is dN
dx = S

1+kB dE
dx

▶ For contained events, integrate over E down to 0
▶ 90Y: β−; Q-value of 2.3 MeV, 210Po: α, energy of 5.3 MeV

We measure charge collected “∝” # of photons collected
▶ Need to correct for Q.E. (known), geometric efficiency
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Scintillation yields

Simulation tuning
Model system using RAT-PAC Monte Carlo
▶ Prediction of Cherenkov production rates
▶ Easily include wavelength-dependencies
▶ To some extent, “edge effects”

Reducing to 1D problems, parameters can be inferred via χ2 scans
▶ Water data (βs): efficiency fudge-factor
▶ With fixed kB, α/β scintillation efficiency (S)
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Scintillation yields

Best-fit charge spectra
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Scintillation yields

Best-fit model parameters

Material Sβ [photons/MeV] ⟨N⟩α [photons]
1% WbLS 257 ± 4±25

24 58 ± 2 ± 6
5% WbLS 754 ± 10±73

70 281 ± 3 ± 28
10% WbLS 1380 ± 14±134

128 516 ± 8 ± 153
LAB + 2 g/L PPO ∼ 12200

β results assume same kB of LAB + 2 g/L PPO
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Scintillation yields

Assessing Birks’ quenching
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Näıve Birks not a good fit there, but still...
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Time profiles

Scintillator time profiles

Birks further says that dN
dt =

∑
i Ai

e−t/τi −e−t/τR
τi −τR

▶ Time measured since an energy deposition
▶ Energy transfers non-radiatively from matrix to visible fluor
▶ Various visible decay modes

From there, can include Cherenkov component and system response
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Time profiles

The LAPPD
Large Area Picosecond Photodetectors extend micro-channel plate
technology to sensitive areas > 10×
▶ Timing resolution < 100 ps (“σ”)
▶ ∼ 400 cm2 sensitive area
▶ 32% peak quantum efficiency
▶ Various anode options (pixels, strips, ...)
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Time profiles

Model implementation and analysis strategy - βs
Joint LAPPD-PMT single-PE measurement
▶ LAPPD demonstrates C/S separation, sensitive to risetime
▶ PMT constrains long decay times (lower noise rate)

At high trigger occupancy (high charge) system response is approximately
Gaussian
▶ Gaussian approximation allows for analytic model evaluation
▶ Efficiently fit for underlying time profile parameters

GEANT4-based RAT-PAC simulation improves on modeling of system
response
▶ Improvements in modeling of C/S transition region
▶ Accurate measurement of Cherenkov purity
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Time profiles

Visual WbLS results - βs
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Time profiles

Visual LAB+PPO results - βs
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Phys. Rev. Lett. 128, 0981803 (2022).
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Time profiles

Quantitative results - βs

S(t) =
n∑

i=0
Ai

(
e−t/τi − e−t/τR

τi − τR

)

F (t) = (1 − fD) G (t − t0; σ) ⊗ (fCδ (t) + (1 − fC ) S (t)) + fD
T

Increasing scintillator fraction →
1% WbLS 5% WbLS 10% WbLS 2 g/L LS

τR [ps] 270 +26
−20 209 +10

−11 276 +7
−7 594 +22

−15
τ1 [ns] 2.22 +0.02

−0.02 2.25 +0.01
−0.01 2.36 +0.01

−0.01 4.64 +0.06
−0.06

τ2 [ns] 17.7 +1.3
−1.1 23.5 +1.0

−0.9 22.8 +0.7
−0.7 18.1 +0.6

−0.6
A1 [%] 95.6 +0.3

−0.3 94.8 +0.1
−0.1 94.9 +0.1

−0.1 78.9 +0.8
−0.9

χ2/ndf 2967.6/2388 3031.1/2388 3373.2/2388 2706.0/2388
Purity in MC [%] 80.4 68.6 64.3 -
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Time profiles

Bonus samples
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Slower German Slow German 0.1% GdWbLS
Light yield [ph./MeV] 6679 ± 268 9345 ± 375 ≲ 100

τR [ps] 140 ± 40 120 ± 43 0.5 ± 19
τ1 [ns] 11.7 ± 3.2 13.0 ± 3.4 1.74 ± 0.03
τ2 [ns] 29.1 ± 3.5 26.3 ± 4.6 11.1 ± 0.8
A1 [%] 21.0 ± 6 44.0 ± 7 91.6 ± 1.6
χ2/ndf 2618.3/2388

Purity in MC [%] 90.1 80.3 -
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Time profiles

Model implementation and analysis strategy - αs

PMT-only measurement

Trigger occupancy is naturally low
▶ Explicitly model compound asymmetric system response
▶ Too many details, ask if interested
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Time profiles

Results - αs
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Particle ID

α/β discrimination

Given two different time profiles for αs and βs, we define the
likelihood-ratio

F (t) = log (Pα (t) /Pβ (t))

and for a finite # (n) of hits at times {ti} compute a normalized
“test-statistic,” “classifier value,” or “PID value”

Qn ({ti}) = 1
n
∑

i
F (ti)

This is the average of an r.v., and so asymptotically Gaussian
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Particle ID

α/β discrimination - benchmark detectors

Size matters: wavelength-dependent attenuation and dispersion distort the
observed time profile in a real detector

Quantify PID performance for central events in three simulated detectors
▶ Right-cylindrical geometry
▶ Generally Hamamatsu R14688-100-like PMTs
▶ Match photoproduction: 210Po vs 400-500 keV βs

Dimension [m] H2O-equiv. mass [t] Photocoverage [%]
Eos-like 4 40

SNO+-like 5.4 103 54
Theia-like 25.2 105 85
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Particle ID

α/β discrimination - benchmark time profiles
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Particle ID

α/β discrimination - performance
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Summary

Summary

Resources at Berkeley for scintillator characterization
▶ Simulation-free / -backed light yield and timing measurements

Part of a wider campaign
▶ Dichroicon deployments
▶ Proton light yield measurements (collabs. w. 88-Inch, Mainz)

General takeaways:
▶ LAPPDs work, but: we had high noise and 2 cathode failures
▶ In favorable scenarios, can see Cher. light in plain LAB+PPO
▶ WbLS is fast, but fast photodetectors can still distinguish Cher.
▶ W.r.t. PID, dominant factor is occupancy
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Backup

Water-based liquid scintillator
Hybrid reconstruction has been utilized by e.g. LSND and MiniBooNE
But energy range was much higher (more favorable C/S ratio), and there
are hurdles to scalability:
▶ Scintillator is relatively costly
▶ Optical effects play a larger role

To go larger, go WbLS: start with water, mix in scintillator as needed
▶ But need to know optical properties, timing, light yield...

of gadolinium into the WbLS has been tested and the results are
very promising. Current samples of �0.5% Gd in WbLS are available
for in-lab tests; however loading parameters for large-scale produc-
tion will require modification depending on the experimental
needs. Eventually a larger WbLS (with and without metallic ions)
demonstrator, at the scale of few tons, will be built for prototype-
studies of anti-neutrinos from a nuclear reactor.
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PLY

Proton light yield measurement - Motivation

Variety of motivations
▶ Background rejection for inverse beta decay (IBD)
▶ Probe quenching mechanisms
▶ Supernova studies via νp-scattering

Focus is fast neutrons: in LS, can see n-p scatter(s) before capturing
▶ Background to IBD
▶ Typically below Cherenkov threshold
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PLY

Proton light yield measurement - Methodology
“Double time-of-flight” method: Pulsed deuteron beam on Be target +
PID-capable secondary detectors
Collaboration with Bay Area Neutron Group (BANG — UCB/LBNL)
▶ Brown et al, Jour. Appl. Phys. 124, 045101 (2018)

Protons excited via n-p elastic scattering internal to measurement sample
Two kinematic measures of neutron energy (before/after scattering)
▶ Three measures of proton energy (under single-scatter hypothesis)
▶ Enforce consistency with beam-neutron hypothesis

Charge collected in photomultipler tube (PMT) used as proxy for light
Measure two samples: 5% WbLS and LAB + 2 g/L PPO (from Yeh et al, BNL)
▶ Existing LABPPO measurement: von Krosig et al, EPJC 73, 2390 (2013)
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PLY

Proton light yield measurements - Results
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Dichroicons

The Dichroicon

A different approach (from UPenn):
Instead of using timing information to change the C/S proportions, use
dichroic filters to manually affect cuts on wavelength

Kaptanoglu et al. Phys. Rev. D 101 072002 (2020)
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Dichroicons

Dichroicons in CHESS
Upgrade CHESS array with 8 additional “blue-sensitive” PMTs, and 4
“red-sensitive” PMTs

Use α, β, γ sources, as well as cosmic muons, to demonstrate different
C/S proportions with different filter choices
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Dichroicons

Dichroicons in CHESS
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