### Benchtop scintillator measurements at Berkeley

### Ed Callaghan

June 04, 2025

Ed Callaghan

Benchtop scintillator measurements at Berkeley

June 04, 2025 1 / 25

Context of these slides is R&D for "large optical neutrino detectors"

- Fully contained events (calorimetry)
- $\sim 4\pi$  holographic coverage (directionality)
- ► Think SNO/+, Super-/Hyper-K, Borexino, Juno, ...

We all dream of a hybrid detector...

- Distinguish between Cherenkov / scintillation photons to leverage advanced reconstruction to address a variety of physics topics
- Next-gen reconstruction to improve physics reach
- Solars, supernovae,  $\bar{\nu}$ ,  $\delta_{CP}$ ,  $0\nu\beta\beta$ , ...

This talk: R&D measurements to support getting there

- Mostly WbLS based on LAB + PPO mixtures plus gadolineum!
- German DIN-infused slow scintillator

Ed Callaghan

## R&D for hybrid optical detectors

Remember: we have to reconstruct the neutrino interaction from "hits"

- Energy, position resolution improves with # of hits
- Direction resolution improves with significance of Cherenkov hits



# R&D for hybrid optical detectors at Berkeley

Local campaign making use of:

- Modern chemical synthesis techniques
- State-of-the-art photodetectors
- Novel spectral sorting technology

...to characterize and, hopefully, achieve high-purity Cherenkov selection









# CHESS of yesterday

CHESS proper was an apparatus to demonstrate

\* Cherenkov and Scintillation Separation \*

Originally consisted of 12+2 H11934s, 1 R7081, and 6 veto PMTs

- CAEN V1742s, V1730s
- Have since upgraded with additional 12+1 H11934s



Ed Callaghan

### CHESS of today



Ed Callaghan

Scintillation yields



Birks says mean photon production along a trajectory is  $\frac{dN}{dx} = \frac{S}{1+kB\frac{dE}{dx}}$ For contained events, integrate over *E* down to 0 <sup>90</sup>Y:  $\beta^-$ ; Q-value of 2.3 MeV, <sup>210</sup>Po:  $\alpha$ , energy of 5.3 MeV

We measure charge collected "  $\propto$  " # of photons collected

Need to correct for Q.E. (known), geometric efficiency

Ed Callaghan

# Simulation tuning

Model system using RAT-PAC Monte Carlo

- Prediction of Cherenkov production rates
- Easily include wavelength-dependencies
- To some extent, "edge effects"

Reducing to 1D problems, parameters can be inferred via  $\chi^2$  scans

- Water data (βs): efficiency fudge-factor
- With fixed  $k_B$ ,  $\alpha/\beta$  scintillation efficiency (S)



### Best-fit charge spectra



### Best-fit model parameters

| Material        | $S_eta$ [photons/MeV]                    | $\langle \textit{N}  angle_{lpha}$ [photons] |
|-----------------|------------------------------------------|----------------------------------------------|
| 1% WbLS         | $257 \pm 4 \pm ^{25}_{24}$               | $58\pm2\pm6$                                 |
| 5% WbLS         | $754 \pm 10 \pm ^{73}_{70}$              | $281\pm3\pm28$                               |
| 10% WbLS        | $1380 \pm 14 \pm \stackrel{134}{_{128}}$ | $516\pm8\pm153$                              |
| LAB + 2 g/L PPO | $\sim 12200$                             |                                              |

 $\beta$  results assume same  $k_B$  of LAB + 2 g/L PPO

Scintillation yields

## Assessing Birks' quenching



## Scintillator time profiles



Birks further says that  $\frac{dN}{dt} = \sum_{i} A_{i} \frac{e^{-t/\tau_{i}} - e^{-t/\tau_{R}}}{\tau_{i} - \tau_{R}}$ 

- Time measured since an energy deposition
- Energy transfers non-radiatively from matrix to visible fluor
- Various visible decay modes

From there, can include Cherenkov component and system response

Ed Callaghan

### The LAPPD

Large Area Picosecond Photodetectors extend micro-channel plate technology to sensitive areas  $>10\times$ 

- Timing resolution  $< 100 \text{ ps} ("\sigma")$
- $ightarrow \sim 400 \ {
  m cm}^2$  sensitive area
- 32% peak quantum efficiency
- Various anode options (pixels, strips, ...)





# Model implementation and analysis strategy - $\beta$ s

Joint LAPPD-PMT single-PE measurement

- ► LAPPD demonstrates C/S separation, sensitive to risetime
- PMT constrains long decay times (lower noise rate)

At high trigger occupancy (high charge) system response is approximately Gaussian

- Gaussian approximation allows for analytic model evaluation
- Efficiently fit for underlying time profile parameters

GEANT4-based RAT-PAC simulation improves on modeling of system response

- ► Improvements in modeling of C/S transition region
- Accurate measurement of Cherenkov purity



Ed Callaghan

### Visual LAB+PPO results - $\beta$ s



Quantitative results -  $\beta$ s

$$S(t) = \sum_{i=0}^{n} A_i \left( \frac{e^{-t/\tau_i} - e^{-t/\tau_R}}{\tau_i - \tau_R} \right)$$

$$F(t) = (1 - f_D) G(t - t_0; \sigma) \otimes (f_C \delta(t) + (1 - f_C) S(t)) + \frac{f_D}{T}$$

| Increasing scintillator fraction – | ntillator fraction $\rightarrow$ | Increasing |
|------------------------------------|----------------------------------|------------|
|------------------------------------|----------------------------------|------------|

|                    | 1% WbLS                | 5% WbLS                | 10% WbLS               | 2 g/L LS                      |
|--------------------|------------------------|------------------------|------------------------|-------------------------------|
| $	au_R$ [ps]       | $270^{+26}_{-20}$      | $209^{+10}_{-11}$      | $276^{+7}_{-7}$        | $594^{+22}_{-15}$             |
| $	au_1$ [ns]       | $2.22^{+0.02}_{-0.02}$ | $2.25^{+0.01}_{-0.01}$ | $2.36^{+0.01}_{-0.01}$ | $4.64\substack{+0.06\\-0.06}$ |
| $	au_2$ [ns]       | $17.7^{+1.3}_{-1.1}$   | $23.5^{+1.0}_{-0.9}$   | $22.8^{+0.7}_{-0.7}$   | $18.1^{+0.6}_{-0.6}$          |
| A <sub>1</sub> [%] | $95.6^{+0.3}_{-0.3}$   | $94.8^{+0.1}_{-0.1}$   | $94.9^{+0.1}_{-0.1}$   | $78.9^{+0.8}_{-0.9}$          |
| $\chi^2/{\sf ndf}$ | 2967.6/2388            | 3031.1/2388            | 3373.2/2388            | 2706.0/2388                   |
| Purity in MC [%]   | 80.4                   | 68.6                   | 64.3                   | -                             |

ſ

### Bonus samples



### Model implementation and analysis strategy - $\alpha {\bf s}$

### PMT-only measurement

Trigger occupancy is naturally low

- Explicitly model compound asymmetric system response
- Too many details, ask if interested



Results -  $\alpha s$ 



# $\alpha/\beta$ discrimination

Given two different time profiles for  $\alpha {\rm s}$  and  $\beta {\rm s},$  we define the likelihood-ratio

$$F(t) = \log \left( P_{\alpha}(t) / P_{\beta}(t) \right)$$

and for a finite # (*n*) of hits at times { $t_i$ } compute a normalized "test-statistic," "classifier value," or "PID value"

$$Q_n(\lbrace t_i\rbrace) = \frac{1}{n}\sum_i F(t_i)$$

This is the average of an r.v., and so asymptotically Gaussian

Particle ID

### $\alpha/\beta$ discrimination - benchmark detectors

Size matters: wavelength-dependent attenuation and dispersion distort the observed time profile in a real detector

Quantify PID performance for central events in three simulated detectors

- Right-cylindrical geometry
- Generally Hamamatsu R14688-100-like PMTs
- Match photoproduction: <sup>210</sup>Po vs 400-500 keV  $\beta$ s

|                            | Dimension [m] | $H_2O$ -equiv. mass [t] | Photocoverage [%] |
|----------------------------|---------------|-------------------------|-------------------|
| $\operatorname{Eos}$ -like |               | 4                       | 40                |
| SNO+-like                  | 5.4           | 10 <sup>3</sup>         | 54                |
| $T{\rm HEIA}{-}{\sf like}$ | 25.2          | 10 <sup>5</sup>         | 85                |

#### Particle ID

### $\alpha/\beta$ discrimination - benchmark time profiles







### $\alpha/\beta$ discrimination - performance



# Summary

Resources at Berkeley for scintillator characterization

Simulation-free / -backed light yield and timing measurements

Part of a wider campaign

- Dichroicon deployments
- Proton light yield measurements (collabs. w. 88-Inch, Mainz)

General takeaways:

- LAPPDs work, but: we had high noise and 2 cathode failures
- ▶ In favorable scenarios, can see Cher. light in plain LAB+PPO
- ► WbLS is fast, but fast photodetectors can still distinguish Cher.
- ► W.r.t. PID, dominant factor is occupancy

# Water-based liquid scintillator

Hybrid reconstruction has been utilized by e.g. LSND and MiniBooNE But energy range was much higher (more favorable C/S ratio), and there are hurdles to scalability:

- Scintillator is relatively costly
- Optical effects play a larger role

To go larger, go WbLS: start with water, mix in scintillator as needed

But need to know optical properties, timing, light yield...



Proton light yield measurement - Motivation

Variety of motivations

- Background rejection for inverse beta decay (IBD)
- Probe quenching mechanisms
- Supernova studies via vp-scattering

Focus is fast neutrons: in LS, can see *n*-*p* scatter(s) before capturing

- Background to IBD
- Typically below Cherenkov threshold

## Proton light yield measurement - Methodology

"Double time-of-flight" method: Pulsed deuteron beam on Be target + PID-capable secondary detectors Collaboration with Bay Area Neutron Group (BANG — UCB/LBNL)

Brown et al, Jour. Appl. Phys. 124, 045101 (2018)

Protons excited via n-p elastic scattering internal to measurement sample Two kinematic measures of neutron energy (before/after scattering)

- Three measures of proton energy (under single-scatter hypothesis)
- Enforce consistency with beam-neutron hypothesis

Charge collected in photomultipler (PMT) used as proxy for light Measure two samples: 5% WbLS and LAB + 2 g/L PPO (from Yeh et al, BNL)

Existing LABPPO measurement: von Krosig et al, EPJC 73, 2390 (2013)

### Proton light yield measurements - Results



Dichroicons

## The Dichroicon

A different approach (from UPenn):

Instead of using timing information to change the C/S proportions, use dichroic filters to manually affect cuts on wavelength



Kaptanoglu et al. Phys. Rev. D 101 072002 (2020)

Dichroicons

## Dichroicons in CHESS

Upgrade CHESS array with 8 additional "blue-sensitive" PMTs, and 4 "red-sensitive" PMTs

Use  $\alpha$ ,  $\beta$ ,  $\gamma$  sources, as well as cosmic muons, to demonstrate different C/S proportions with different filter choices





# Dichroicons in CHESS



Figures courtesy of S. Naugle