Spectral Photon Sorting with Dichroicons

Hybrid Detector Workshop June 4th, 2025 Samuel Naugle

Hybrid Cherenkov and Scintillation Detectors

- A hybrid detector provides many advantages, but with some difficulties
- Four distinct approaches to hybrid detection
 - Reduce intensity of scintillation light (WbLS)
 - Utilize time separation between Cherenkov and scintillation light (fast sensors/slow scintillators)
 - Use the angular distribution of Cherenkov photons
 - Use wavelength information (dichroicons)

The Dichroicon

- Dichroic filters sort photons by wavelength
 - Sort Cherenkov and scintillation light to detect both simultaneously and separately

First Demonstration

First demonstrations showed clear separation of Cherenkov and scintillation light

- The performance of the dichroicon was measured at the CHESS experiment
 - Sources: Atmospheric muons, ⁶⁰Co, ⁹⁰Sr, and ²¹⁰Po
 - Targets: Water, 10% WbLS, LAB with 2 g/L PPO
 - Dichroicon layouts: Long and short concentrating

- Deployed source also demonstrated particle ID capabilities of the dichroicon

Dichroic

 Charge collection measurements show that the advantage of the Winston cone for photon collection

	Scintillation Yield	Cherenkov Yield
	Charge/Event/PMT [pC]	C_{hits}/PMT
Aperture Filter	10.2 ± 0.1	0.023 ± 0.007
Long-conc. Dichroicon	4.35 ± 0.04	0.066 ± 0.009
Short-conc. Dichroicon	19.2 ± 0.3	0.077 ± 0.002

- The dichroicon is not filtering light, rather it sorts the photons
- Due to optics of Winston cones, the long concentrating dichroicon is not optimal for setups with close photon sources
 - This is not necessarily an issue in large detectors
 - Still both do "better" than aperture only design

Eos Deployment

- 12 monolithic dichroicons deployed in the Eos detector
 - Eos is a 30 ton experiment whose goal is to demonstrate hybrid Cherenkov and scintillation utilization
 - Involves many new technologies and will scan over multiple WbLS loadings
- First test of a monolithic, kiloton scale dichroicon design
- Cost of filters per dichroicon is
 ~\$2000

8" Cherenkov PMT-

Short pass filters

10" Scintillation PMT

Long pass filter

Eos Deployment

Eos Deployment

Eos Considerations

- A large amount of effort was put into optimizing this new, larger dichroicon design
- Simulated various Winston cone shapes to find maximum collection efficiency
- Custom molded longpass filter allows PMT photocathode to fit through aperture of Winston cone
 - Improves collection efficiency by ~50% relative to design with PMT pushed through aperture

Eos Demonstrations

- Eos has collected water data and preliminary WbLS data
 - Many sources deployed, including β 's, neutrons, γ 's, calibration lasers
- Currently taking 1% WbLS data
- Plot on right shows data MC agreement for "laserball" runs at different wavelengths
 - No leakage at short wavelengths!

Planned Eos Demonstrations

- Appearance and disappearance of Cherenkov cone using directional source
 - Includes measurement of Cherenkov purity with different WbLS fractions
- $-\,\alpha/\beta/\gamma$ particle ID with dichroicons
- Reconstruction which intelligently leverages information from dichroicons
- Plot on right shows hit times on dichroicons from 2 MeV electrons in 10% WbLS

Optimization Parameters

Planning for the Eos deployment made one thing clear, optimization parameter space for dichroicons is vast

A few considerations:

- Cut on wavelengths of filters

- Increase Cherenkov yield at the cost of purity on the Cherenkov PMT
- Decreases the scintillation yield
- Shape and style of dichroicon
 - Each detector and use case has a slightly different optimal shape

– Photon detectors

- Improvements to QE and timing will aid in Cherenkov collection and purity
- Placement of dichroicons
 - How many and where?

Dichroicon niche

- In large scintillator detectors, vertex of physics events are unknown
 - PMT hit times do not directly translate to photon emission times
 - Analysis must reconstruct photon emission times, called hit time residuals
- Hit time residuals are sensitive to optics and detector effects that may be hard to understand
 - Faster timing alone may not help if there are large systematic errors on scintillator model or position reconstruction
- Dichroicon photon sorting efficiency does not* depend on position of events in the detector, so it won't be affected by systematics on reconstruction or optics
- Additionally, dichroicons could be used as a calibration tool since they probe distinct wavelength bands that standard PMTs integrate over

Looking Ahead - Near Term

- Current focus is the initial Eos deployment
- But there are many ideas that still need to be explored
 - Large scale short concentrating dichroicon
 - New photodetectors like SiPMs and LAPPDs
 - The "trichroicon"
 - New dichroic filter technology including atomic layer deposition (ALD) techniques
 - Novel scintillators

Looking Ahead - Long Term

- Long term goal of dichroicons deployed in next generation kiloton-scale neutrino detectors, like Theia (50kT)
 - Below are preliminary simulation results using 5 MeV electrons in a detector filled with 2g/L LABPPO

Questions? Thanks for listening!

Backup

Angular dependence

22