Fast (large-area) PMT Measurements

Workshop on Hybrid Cherenkov / Scintillation Detection Techniques

Tanner Kaptanoglu UC Berkeley & LBNL 6/4/2025

Current generation of large-area PMT options

IceCube

8-inch PMT R14688 (R5912) T. Kaptanoglu et al, NIM A 19 02 (2024) TTS ~ 3.0 - 3.5 ns

10-inch PMT R7081 IceCube Collaboration, NIM A 618 (2010)

12-inch PMT R11780 J. Brack et al., NIM A 712 (2013)

LBNE

TTS ~ 3.0 ns

Hyper-K & JUNO TTS ~ 3.0 ns

20-inch PMT R12860 C Bronner et al., J. Phys.: Conf. Ser. 1468 (2020)

Some details

Hamamatsu can make these PMTs with either the standard bialkali photocathode (Q.E. ~25% @ 400 nm) or super bialkali photocathode (Q.E. ~35% @ 400 nm). Many other large-area PMTs, such as JUNO 20" PMTs, but most are fairly "slow".

Focus on 8-inch PMTs

This talk will focus on the 8-inch PMTs, which are significantly faster.

8-inch PMT development

R1408 (SNO, LSND) S.D.Biller et al., NIM A 432 (1999) TTS ~ 3.0 - 4.0 ns (FWHM) R5912 (Daya Bay, MiniBooNE) Daya Bay Collaboration, NIM B 229-232 (2012)

TTS ~ 2.0 - 3.0 ns (FWHM)

T. Kaptanoglu et al, NIM A 19 02 (2024) TTS ~ 1.0 - 1.5 ns (FWHM)

8-inch PMT development

R5912-MOD (not cryogenic) Towards developing R14688

Characterized at UPenn in coordination with Hamamatsu development.

Exhibited excellent charge & timing response, with lots of afterpulsing.

T. Kaptanoglu, NIM A 889 (2018)

R5912-MOD characterization

R14688 characterization

Commercially available Hamamatsu 8" PMT that is a direct upgrade to the R5912

Characterized for and deployed in Eos (T. Kaptanoglu et al., *JINST* 19 (2024))

R14688 characterization

Commercially available Hamamatsu 8" PMT that is a direct upgrade to the R5912

Characterized for and deployed in Eos (T. Kaptanoglu et al., *JINST* 19 (2024))

R14688 in Eos

R14688 PMTs deployed in Eos have been characterized in the water phase using a central deployed, isotropic laserball at four wavelengths.

Other R14688 measurements

Radiopurity of the glass measured @ SURF. According to Hamamatsu, low radioactivity glass is possible.

Dark-rates around ~5 kHz, similar to other large-area PMTs.

Future work: understanding performance across the photocathode & magnetic field effects.

Sample	U (mBq/kg)	Th (mBq/kg)	K (mBq/kg)
PMT glass	3144 ± 158	4486 ± 257	7874 ± 398
PMT dynode	421.2 ± 28.2	55.8 ± 5.0	219 ± 24

Table 2. The results of the radiological assay of the PMT parts, performed at SURF.

Other future considerations

What is the best layout for the dichroicon? Fast cylindrical PMTs for the aperture?

Red-sensitive photocathodes for large-area PMTs?

Conclusions

The 8-inch R14688 PMT is an excellent candidate for a future hybrid detector given its relatively large size and excellent timing and charge response.

