

Logan Lebanowski, Darcy Newmark, Janet Conrad, Zach Larsen, Josh Klein, Gabriel Orebi Gann

Workshop on Cher./Scint. Detection UPenn 2025/6/5

Archers

Cherenkov + Scintillation in an optical LAr detector

Cherenkov + Scintillation

Cherenkov and scintillation photons are distinguishable via

Challenges:

- Timing: Resolving difference between scintillation and Cherenkov.
- Wavelength: Typical photosensors alone do not distinguish wavelengths.
- Yields: Scintillation yields are far greater and attenuation is often significant.

Cherenkov + Scintillation in a LAr detector

In LAr, Cherenkov and scintillation photons are distinguishable via

LAr can addresses some challenges:

- Timing: Fast photon detectors.
- Wavelength: LAr scintillates narrowly around 128 nm + spectral sorting/shifting.
- Yields: LAr has high scint. yield (25k-50k photons/MeV) and favorable absorption.

Cherenkov + Scintillation Physics in LAr

Similarly expansive program as WbLS detector with basic differences:

- Finer energy resolution from scintillation.
- Access to lower energies from scintillation.
 - But Ar-specific backgrounds must be suppressed below several MeV see next slide.
- Without hydrogen.
 - \circ Greater uncertainties in modeling of nuclear interactions.
 - No access to ubiquitous IBD interaction: $v_e^- + {}^1H \rightarrow e^+ + n$, but have other unique channels in Ar; e.g., $v_e^- + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$ and $v_e^- + {}^{40}Ar \rightarrow e^+ + {}^{40}Cl^*$
- Other possibilities, like doping ¹³⁶Xe for a search for neutrinoless double beta decay [inspire 2058896].

Cherenkov + Scintillation Backgrounds in LAr

Sensitivities depend on backgrounds, which LAr has in abundance at low energies.

- Intrinsic radioactivity of atmospheric Ar
 - ³⁹Ar β⁻ decay (Q = 0.57 MeV) @ 1 Bq/kg.
 ⁴²K β⁻ decay (Q = 3.5 MeV) @ 0.1 Bq/kg.
 - Underground $Ar \rightarrow {}^{39}Ar @ \sim 0.7 \text{ mBq/kg}^{[1]}.$
- Cosmogenic backgrounds
 - \circ Heavier isotopes than in water abundant below several MeV^{[2]}. \rightarrow
 - $$\label{eq:alpha} \begin{split} \circ & ~^{41}\mathrm{Ar}\; \pmb{\beta}^{-} \;\mathrm{decay}\; (\mathrm{Q}=2.5\;\mathrm{MeV}) \; @\; 1600/\mathrm{day}/10\;\mathrm{kton}, \tau_{1/2}=6.6 \times 10^3\;\mathrm{s}. \\ & ~^{38}\mathrm{Cl}\; \pmb{\beta}^{-} \;\mathrm{decay}\; (\mathrm{Q}=4.9\;\mathrm{MeV}) \; @\; 110/\mathrm{day}/10\;\mathrm{kton}, \tau_{1/2}=2234\;\mathrm{s}. \end{split}$$
- Atmospheric neutrino backgrounds

Cherenkov + Scintillation Optics in LAr

Absorption

Differences in optics and event interactions:

- Refractive index is lower:
 - 1.24 vs. 1.33 for water \Rightarrow 80% Cherenkov yield (~61% LS), higher Cherenkov Ο threshold.
 - $1.38 @ 128 \text{ nm} \Rightarrow$ different velocities for Cherenkov and scintillation photons Ο \Rightarrow greater time separation.
- Z is higher: $Z_{Ar} = 18$. Density is higher: 1.40 vs. 1.00 g/cm³. •
 - Greater scattering, possibly worsening direction resolution. 0
 - Lower critical energy, impacting reconstructed energy resolution at higher energies. 0
 - Shorter tracks at lower energies, better containment. 0
- Favorable attenuation \Rightarrow low scattering best preserves directional Cherenkov . information, but short wavelength scintillation is significantly impacted.

Archers studies ongoing

- Collaboration between
 Berkeley/Penn (Logan, Z. Larsen, J. Klein, G. Orebi Gann) & MIT (Darcy Newmark, J. Conrad)
- Modeling detector as a DUNE module lined by PMTs.
 - \circ ~ Simulations using ratpac2 and CCM framework.
- PMT coverage 70%
 - 86,000 8" Hamamatsu R5912-02 Mod.
 - QE peaks at 18%.
- TPB re-emits visible light isotropically with $\tau \sim 2$ ns.
- Currently comparing low-level quantities and preparing for event recon.

Archers study (OLD)

- DUNE-sized and -shaped module covered by PMTs, <u>half</u> <u>coated with wavelength shifter TPB</u> (light purple).
 - GPU-accelerated simulations using Chroma¹ to efficiently propagate large numbers of photons in a large detector.
 - \circ Analysis with updated pyrat².
- PMTs
 - Coverage: 80% (55,749).
 - \circ 10-inch diameter.
 - Quantum eff.: Hamamatsu R1408 [SNO].
 - TTS $\boldsymbol{\sigma} = 1.0$ ns.
 - Charge resolution $\sigma = 33\%$.
- Assumes no optical absorption in LAr.

Archers optics (OLD)

- Number of uncoated PMTs that detect Cherenkov photons: 11 per MeV @ 90% purity, within 20 ns. Modern water Cherenkov detectors SNO(+) & Super-K: ~7 per MeV @ 100% purity. Some of the gain may be from TPB absorption of lower-wavelength portion of spectrum and re-emission to neighbor PMTs.
- Number of coated PMTs that detect scintillation photons: ~260 per MeV @ 91% purity, within 500 ns. (~500 p.e./MeV) Modern LS detector JUNO: 1100 p.e./MeV @ ≤100% purity.

Archers C/s (OLD)

Simplistic particle ID using only the ratio of C/s photons.

Good potential for β/γ discrimination at low energy (left plot).

The most naive estimator of ratio of PMT types preserves some (right plot) and can certainly be improved.

Archers high energy (OLD)

<u>1-GeV electron</u>

Detected scint: 628k Detected Cherenkov: 48k Detected total: 676k

Energy of saturation of PMT output:

55.7k PMTs $\rightarrow \sim 12$ p.e./PMT/GeV.

Some PMTs saturate around 200 p.e./PMT \Rightarrow 200/12 = 16 GeV saturation energy.

PMT response becomes nonlinear before saturation.

Can consider a high-gain readout like SNO. Can consider an array of 3" PMTs like JUNO.

Moving forward

Continue developing detector designs using simulations.

• Many degrees of freedom in optimization of photosensors and wavelength shifters/filters.

Improve optical modeling with results from ongoing experiments.

Perform simplistic event analyses aimed at signal-background discrimination and physics sensitivities.

Wavelength shifter could be coated on

- The detector walls
- Coated on/in front of PMTs
- Coated on interstitial panels.

Wavelength shifters other than TPB.

Coating a fraction of PMTs.

Optimize QE and PMT size.

Conclusion

- Argon is a very interesting and advantageous choice of detector medium.
 - Good energy resolution at low energies.
 - $\circ \quad \ \ {\rm Low\ energy\ threshold\ ...}$
 - (Very) low energies might be accessible with strong background suppression.
 - Cherenkov counts may be high and reasonably pure, enabling effective PID.

Compelling triumvirate of systematics and sensitivities:

Archers

Cherenkov + Scintillation in an optical LAr detector

