Cherenkov Light at the Coherent CAPTAIN-Mills Experiment 10 ton liquid Argon light collection detector studying neutrino and beyond **Standard Model physics at Los Alamos National Lab**

*Presenting new results!

Hybrid Scintillation/Cherenkov Detection Workshop 5 June 2025

Darcy Newmark on behalf of the CCM Collaboration

dnewmark@mit.edu

Coherent CAPTAIN-Mills Overview

- **Running** 10 ton LAr light collection experiment at LANSCE (published results: here, here, here, and <u>here</u>)
- 7 ton active LAr volume, 200 8" PMTs, 50% photocoverage
 - R5912 10 stage Hamamatsu cryogenic PMTs
- Walls of detector and 160 PMTs are coated in tetraphenyl butadiene (TPB) (40 uncoated tubes)
- **2 ns** timing resolution from CAEN V1730 digitizers
- Energy detection range from ~100 keV to ~200 MeV

Hybrid Cherenkov/Scintillation Workshop

Coherent CAPTAIN-Mills Physics Program

- 800 MeV proton beam impinges on tungsten target creating π DAR source and intense flux of electrons/photons
- Standard Model: $CC\nu_e$ cross section measurement relevant to DUNE supernovae physics
- <u>Beyond Standard Model: MeV-scale ALPs/QCD</u> axion, scalar mediator DM, leptophobic DM, meson portal model

Hybrid Cherenkov/Scintillation Workshop

Motivations for Cherenkov Light Separation

- For CCM's physics goals, we are focused or event-by-event identification of Cherenko from MeV-scale electrons
- Being at a spallation neutron source, primar unconstrained background for EM final state fast neutrons
 - Expect only scintillation light from back
- For nuclear recoil final states, ³⁹Ar decays and primary background
 - Expect Cherenkov light from only back beta decays

Hybrid Cherenkov/Scintillation Workshop

n ov light	Final State Signals	Electron/Photon	Nuclear F
у es are	Energy Range	~1 - 100 MeV	~100 k
	Scintillation Light	Yes	Yes
kground re the	Cherenkov Light	Yes	No
ground	Background	Fast neutron scatters	Low energed decays (
	Background signal	Scintillation light only	Scintillation cherenko

Light Production in Liquid Argon

Quality	Scintillation Light	Che
Intensity (for a MIP)	~40,000 photons/MeV	~ 700 (wave
Direction	Isotropic	
Timing	Fast component (nsec) and slow component (usec) <u>measured by DEAP collaboration</u>	Pron
Photon Wavelength	Spectrum peaks at 128 nm	

Hybrid Cherenkov/Scintillation Workshop

ρ

- Uncoated PMTs allow for wavelength discrimination between UV scintillation light and broad spectrum Cherenkov light
- Visible Cherenkov photons detected by uncoated tubes before wavelength shifted scintillation light
- Combined with 2ns timing resolution, able to *isolate early Cherenkov signal* in uncoated PMTs

Hybrid Cherenkov/Scintillation Workshop

Detector Simulation Optimization

- Need a well characterized simulation for physics modeling
- Geant4 based differential simulation
 - Tracking photon properties (original wavelength, distance travelled, WLS, detection wavelength and time)
 - Allows for re-weighting between different physics scenarios
- Minimize likelihood using automatic differentiation to fit for optical model

Hybrid Cherenkov/Scintillation Workshop

Calibration Source

- ²²Na calibration source at origin of the detector
 - Source is enclosed in stainless steel
 - Decays produce 1.275 MeV γ and 0.546 MeV e^+
 - Expect scintillation and sub-MeV **Cherenkov light from gamma** interactions (Compton scatters)
- Use accumulated data to fit for scintillation light profile and light propagation effects

Hybrid Cherenkov/Scintillation Workshop

Best Fit Scintillation Light Parameters

- Data vs expectation summed across all PMTs
- Fitting for $R_s (R_t = 1.0 R_s)$, τ_s , τ_t

•
$$R_s = 0.5, \tau_s = 4.34 ns,$$

 $\tau_t = 584.03 ns$ **CCM does NOT**
filter LAr!

- Additionally, fit for PMT afterpulse around 300ns
- Better than 5% agreement at long time scale across all tubes

Hybrid Cherenkov/Scintillation Workshop

E-D/D

Data vs Expectation – Medium Time Scale

- Data vs expectation summed across all PMTs
- Fit for late pulse around 50ns
- Across the entire time region, better than 10% agreement across all tubes

Hybrid Cherenkov/Scintillation Workshop

Data vs Expectation – Short Time Scale Summed Coated PMTs

Hybrid Cherenkov/Scintillation Workshop

Summed Uncoated PMTs

D. A. Newmark, dnewmark@mit.edu

Cherenkov Light in Expectation Summed Coated PMTs Summed Uncoated PMTs

Hybrid Cherenkov/Scintillation Workshop

D. A. Newmark, dnewmark@mit.edu

NHits in Early Time Region

 10^{5}

 10^{4}

10³

 10^{2}

 10^{1}

10⁰

 10^{-1}

NEvents

- Selecting early time region in sodium events, examine number of hits on uncoated tubes
- 10% of events in simulation and data have at least 1 hit in early region
- 86% Cherenkov purity for one or more hit in early time region

Hybrid Cherenkov/Scintillation Workshop

Sodium -6.0 to 0.0 ns, Only Uncoated PMTs

Angular Distribution in Early Time Region

- If more than two hits in the early time region on uncoated tubes, examine the *opening angle with the source location*
- Simulation (blue) shows directional preference similar to data

Hybrid Cherenkov/Scintillation Workshop

Sodium -6.0 to 0.0 ns, Only Uncoated PMTs

Angular Distribution in Early Time Region

- If more than two hits in the early time region on uncoated tubes, examine the *opening angle with the source location*
- Simulation (blue) shows directional preference similar to data
- Scintillation and random background are relatively isotropic (orange and pink)

Hybrid Cherenkov/Scintillation Workshop

Sodium -6.0 to 0.0 ns, Only Uncoated PMTs

Electron Energy vs NCherenkov Photons

3.5

3.0

2.5

2.0

1.5

Deteo

0.5

cted

Photons

- Sodium produces 1.275 MeV and two 0.511 MeV gammas which typically Compton scatter
- Resulting electrons create both the Cherenkov and scintillation signals
- Examine the *true energy of electron* vs number of Cherenkov photons detected in early time region on uncoated tubes in simulation
- Detecting Cherenkov radiation from sub-MeV electrons in LAr on event-by-event basis

Hybrid Cherenkov/Scintillation Workshop

Preliminary Sodium -6.0 to 0.0, Only Uncoated PMTs

Conclusion

- First event-by-event identification of Cherenkov light produced from sub-MeV electrons in LAr (paper in progress)!
- Developing reconstruction to leverage Cherenkov light on event-by-event basis to allow physics searches to approach background free limit
- Ongoing study of large LAr light collection detector that can separate Cherenkov from scintillation light

Hybrid Cherenkov/Scintillation Workshop

D. A. Newmark, dnewmark@mit.edu

17

Thank you for listening!

LABORATORY DIRECTED **RESEARCH & DEVELOPMENT**

Hybrid Cherenkov/Scintillation Workshop

Massachusetts Institute of Technology

Backup

Angular Distribution in Early Time Region

Backup

