Directional Beta Source Development for the Eos Experiment

So Young Jeon Workshop on Hybrid Cherenkov/Scintillation Detection Technologies University of Pennsylvania, June 5th, 2025

The Motivation

Cherenkov / Scintillation separation is a crucial part of hybrid detection...

Angular distribution

Time

Wavelength

So Young Jeon

...how well have we separated them, and how does it affect event reconstruction?

In particular, how can we test our *direction* reconstruction performance?

It would be great to have a calibration source where we know the **direction** of our events...

A Directional Source

Designed to demonstrate **direction reconstruction** capabilities of **Eos**

- Hybrid neutrino detector at UC Berkeley
- 20-tonne detector, 4-tonne target material
- Low E event reconstruction, MC model validation
- 204 8" fast timing PMTs, Dichroicons deployed at bottom of detector

So Young Jeon

A Directional Source

- Creates a collimated beam of electrons, ~Hz

Radioactive Source (Sr-90 or Ru-106)

Active area of radioactive source is 5mm wide.

So Young Jeon

Betas escape through a **conical borehole** that collimates the particles.

Design

Plastic inner shielding near radioactive source to slow down betas and prevent Bremsstrahlung radiation

Metal shielding to shield betas from escaping in other directions

So Young Jeon

Plastic outer shielding encapsulates everything and keeps source watertight

Front tip of the outer shielding near exit is made thin (~0.2mm) to minimize energy loss

Trigger board electronics

So Young Jeon

Self Triggering System to trigger on betas as they escape the source capsule. Wires

Cables for signal & power

7

Self Triggering System

Triggering system consists of:

- a **scintillating fiber gate** that covers the borehole, made from 0.2mm scintillating optical fibers
- two **Silicon Photomultipliers** (SiPMs) detecting light from the scintillating fiber gate
 - Triggering on coincident pulses of both SiPMs significantly reduces dark pulse rate
- Triggering efficiency estimated to be ~50%

So Young Jeon

- Because betas only travel ~1cm in WbLS, a shadow is cast behind source capsule from the scintillation light ("self-shadowing")
- Self-shadowing introduces a bias in direction reconstruction
- We can...

Demonstrate that we understand the effects of selfshadowing

Hybrid Detection Workshop

9

Direction reconstruction using likelihood fit on MC

A directional source, in Eos

Direction reconstruction using likelihood fit on MC

...a smaller directional source, in Eos

Direction reconstruction using likelihood fit on MC

"No shadow" scenario

 \rightarrow Expected reconstruction performance for real physics events

3 source sizes to thoroughly test the affects of self shadowing

30mm

So Young Jeon

30mm

So Young Jeon

30mm

So Young Jeon

30mm

So Young Jeon

Deployment in Water

~1% for Sr-90 runs

So Young Jeon

Deployment in Water

So Young Jeon

Hybrid Detection Workshop

18

Direction Reconstruction

Center of detector, pointing down

Likelihood-based direction reconstruction shows resolution (68th%) of 35~58°, depending on direction and position of source

- PDF made using PMT hitmap
- Other direction reconstruction algorithms are being tested, such as ML-based approaches or BONSAI

Deployment in WbLS

Hybrid Detection Workshop

So Young Jeon

0.40

Summary

- Direction reconstruction is a great way to demonstrate our ability to separate Cherenkov and scintillation light.
- A novel **Directional Beta Source** has been designed to demonstrate direction reconstruction capabilities of Eos.
- 3 different source sizes are being built to thoroughly evaluate our understanding of the self-shadowing effect.
- Deployment in water shows that the we are able to get clean data with expected direction reconstruction performance.

So Young Jeon

