

Tasks on Sensorsand Electronics towards TDR

• SVT Sensor

- ER1 Sensor (babyMOSS)
 - FNAL Beam Test: Data taken in 5-6/2024 by Tucker, Danush (UIC); results on incident angle dep. presented at HP2024 by Tucker
 - BASE SEL Test: Data taken in 5&7/2024 by Anjali et al.; results reported to ITS3 in 9/2024 by Zhenyu
 - Davis TID/NIEL Test: Data taken in 1/2025 by Austin, Shujie, Yu, Zhenyu; FHR/THR (see Yu's talk on 5/6) to be reported to ITS3
 - JLab Beam Test: Data taking in 4/2025 by Yu, Provakar and Zhenyu. Data analysis to be completed by Yu by 6/2025
 - Assembly onto carrier cards: Phat (LBL Tech), Nicholas Gellerman (UCB ME UG). Two boards completed. Twenty by 7/2025


• ER2 Sensor (MOSAIX)

- **Submission:** 6/2025, Receive by the end of 2025
- Bench/Beam Tests in EU for ALICE ITS3: 2026
- Bench/Beam Tests in US for SVT (and ITS3): 2026 (TBC)

EIC-LAS Sensor

• Design & Characterization: TBC

Tasks on Sensors and Electronics towards TDR

• SVT AncASIC

- SLDO (serial powering)
 - **Design:** pre-regulator designed by Amanda Krieger included in 3/2025 submissions by BNL and RAL, receive in 9/2025
 - Characterization: 10/2025-3/2026 (TBC)
- AncBrain (slow control)
 - **Design:** FPGA emulation work by Zhengwei ongoing, to be included in 8/2025 submission by BNL, receive in 3/2026
 - **Characterization:** 5/2025-4/2026 (TBC)
- SVT Readout
 - lpGBT/VTRx+
 - SVT: use lpGBT with AncBrain for slow control, use VTRX with sensor for high-speed data
- SVT Flexible Printed Circuit Board (FPC)
 - Disk FPC Prototype
 - 1st engineering prototype: Zhengwei/Zhenyu work with LTU to define/design/test the prototype
 - Domestic Vendor
 - **OMNI:** Zhenyu/Zhengwei in discussion about 3rd iteration prototype, design in progress
- AC-LGAD
 - BTOF Sensor/ASIC
 - Beam Tests: JLab/DESY in July 2025

SVT WP3 – Electrical Interface

• IT: Trieste

• US: BNL, LANL, LBNL

• UK: Birmingham, Daresbury, Liverpool, Oxford

UA: RPE LTU

Science and Technology Facilities Council

WP3: Electrical Interfaces

Coordinators: Marcello Borri, Zhenyu Ye

WI S. Ele	ctrical Interfaces
3.1	Electrical interfaces IB (L0-2)
3.1.1	Definition of specifications for FPCs & electrical interconnection
3.1.2	Design & supplier evaluation
3.1.3	Prototyping & testing of module, FPCs & electrical interconnection
3.1.4	Iterative improvements of FPC design & electrical interconnection
3.1.5	FPC design complete & electrical interconnection validated
3.1.6	Pre-production of FPCs for system test, including QC
3.1.7	Production of FPCs for production detector, including QC
3.2	OB HIC (L3-4)
3.2.1	Definition of specifications for module, FPCs & electrical interconnection
3.2.2	Design & supplier evaluation
3.2.3	Prototyping & testing of module, FPCs & electrical interconnection
3.2.4	Iterative improvements of module design, FPC & electrical interconnection
3.2.5	OB module design complete
3.2.6	Pre-production of FPC for system test, including QC
3.2.7	Production of FPCs for detector grade modules, including QC
3.3	Disks HIC (ED0-4, HD0-4)
3.3.1	Definition of specifications for module, FPCs & electrical interconnection & back plate
3.3.2	Design & supplier evaluation
3.3.3	Prototyping & testing of module, FPC, electrical interconnection & back plate
3.3.4	Iterative improvements of module design, FPC, electrical interconnection & back plate
3.3.5	Disk module design complete
3.3.6	Pre-production of FPCs for system test, including QC
3.3.7	Production of detector grade FPCs, including QC

5/20/25 Zhenyu Ye

GRSTB

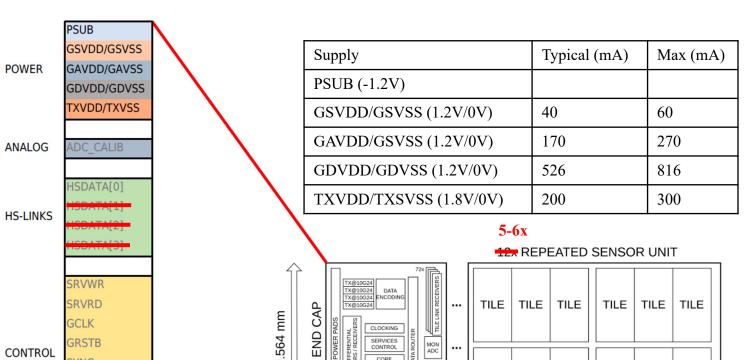
SYNC **TESTOUT**

SCWR SCRD

TXVDD/TXVSS GDVDD/GDVSS

GAVDD/GAVSS

GSVDD/GSVSS


PSUB

CONTROL

HS-LINKS

POWER

EIC-LAS

CORE

4.5 mm

TX@10G24

Signal	Frequency
GCLK	160 MHz
SYNC	N/A
GRSTB	N/A
SRVWR/RD	5 Mbps
SCWR/RD	5 Mbps
HSDATA0	5.12/10.24 Gbps

GSVDD/GSVSS : Global Services domain (1.2V/0V), always-on, used for on-chip services

~9.0-10.8 cm

TILE | TILE

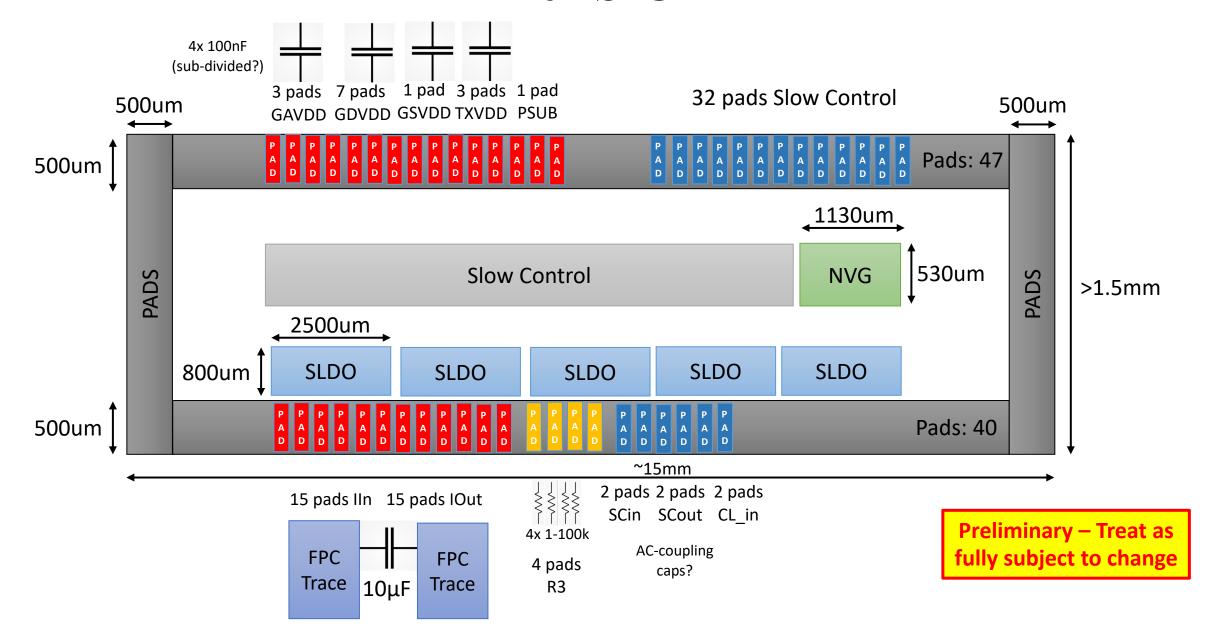
GAVDD/GAVSS : Global Analog domain (1.2V/0V)

TILE | TILE | TILE

GDVDD/GDVSS : Global Digital domain (1.2V/0V)

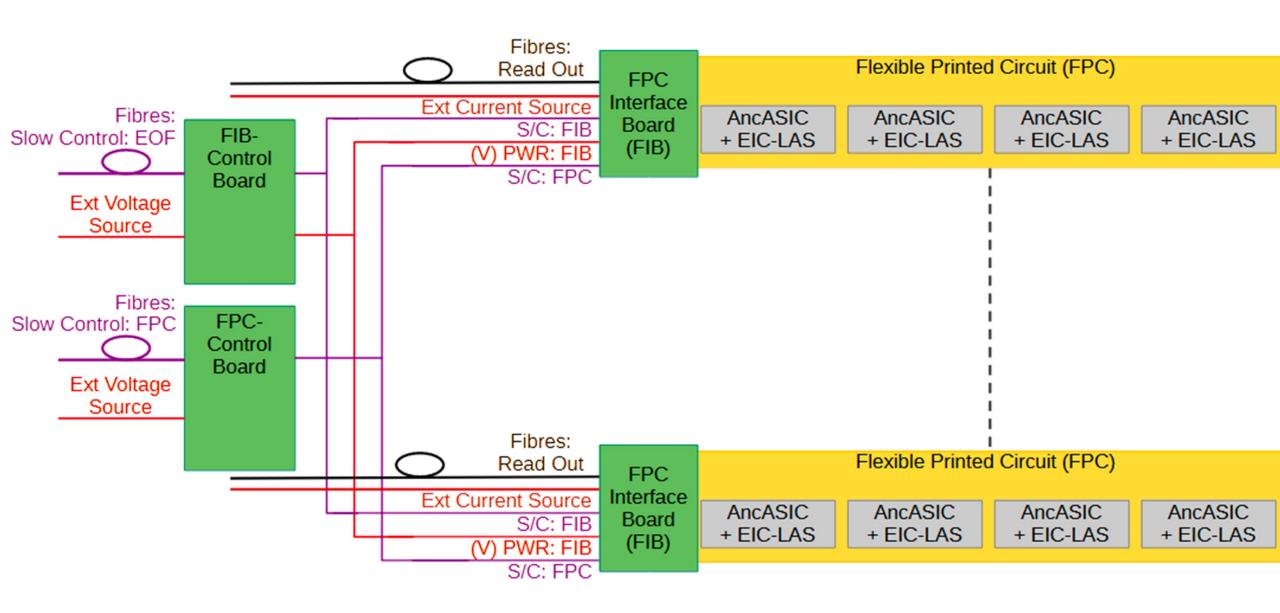
TXVDD/TXVSS : Serializer domain (1.8V/0V), only used for serializers

TILE

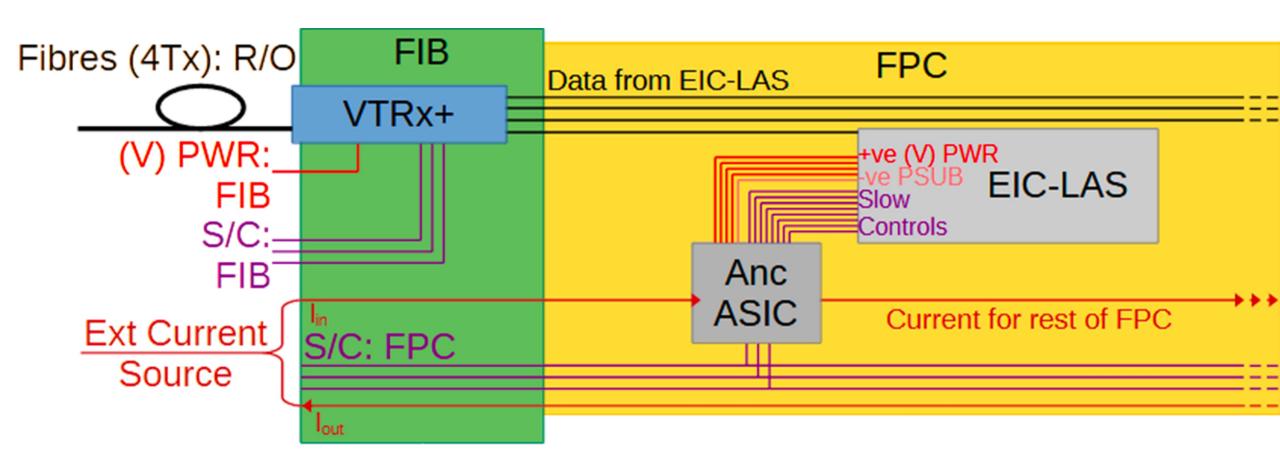

PSUB : Substrate bias (-1.2V .. 0V), used for substrate biasing

Control pads: Powered by the services domain

5/15/25 Zhenyu Ye

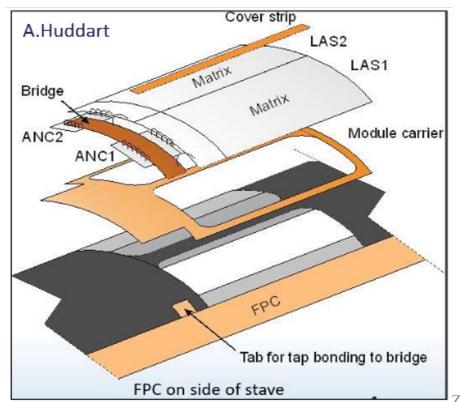


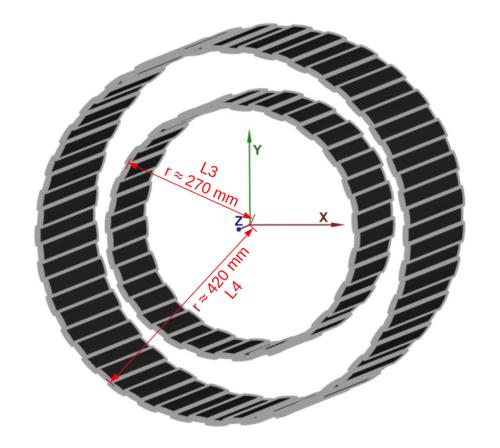
AncASIC

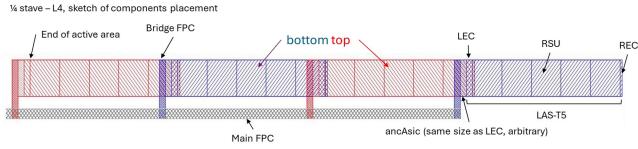


SVT OB/Disk with EIC-LAS+AncASIC

SVT OB/Disk with EIC-LAS+AncASIC

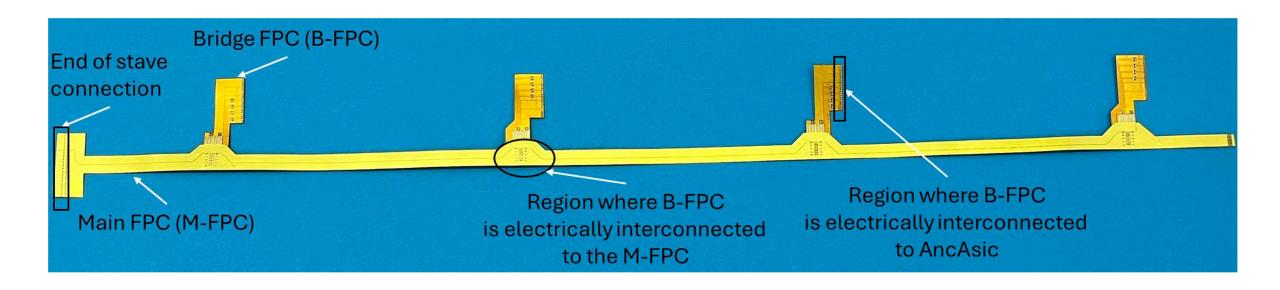

5/15/25 Zhenyu Ye




SVT Outer Barrel (L3/L4)

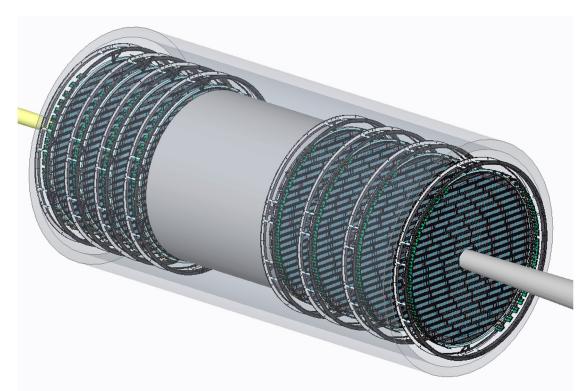
Outer barrels (L3, L4)

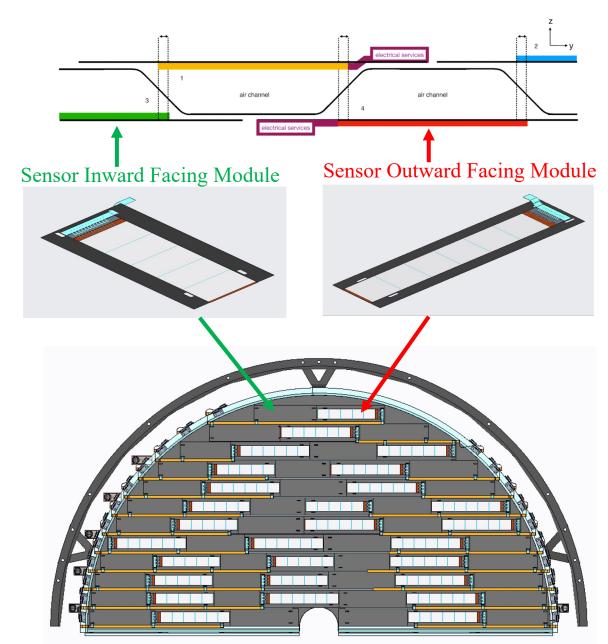
- EIC large area sensors (EIC-LAS) with design modified based on ITS3, mounted on more conventional staved structure with CF support and integrated air/water cooling
- AncASIC for sensor bias, serial power and slow control
- Radii of 27 and 42 cm; lengths of 42 and 84 cm
- $X/X_0 \sim 0.25\%$ and 0.55%



Zhenyu Ye

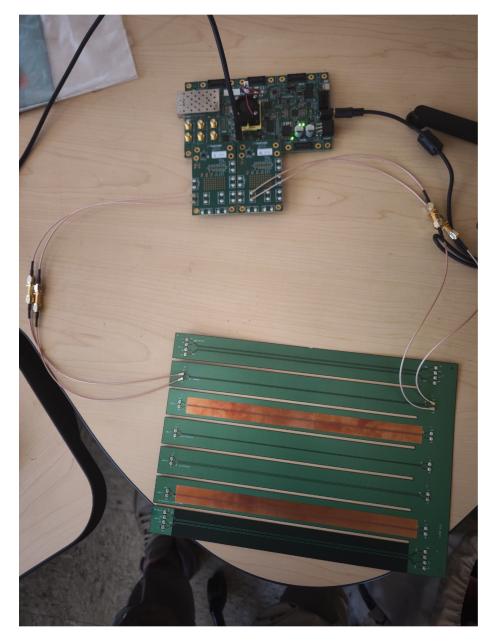
RPE LTU

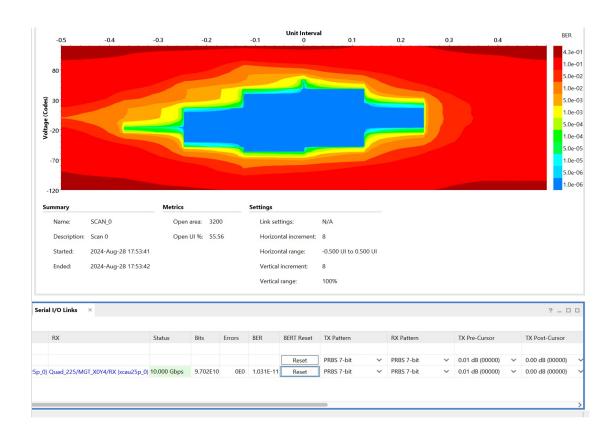

	Components	Thickness	Material	X0 (cm)	XO (%)	Comment
HIC	FPC metal layers	28	Al	8.897	0.031	14um/layer x 2 layers = 28um (FDI-A-24)
	FPC insulating layers 1	20	polyimide	28.57	0.007	10um/layer x 2 layers = 20um (FDI-A-24)
	FPC insulating layers 2	25	polyimide	28.57	0.009	
	FPC binding glue	5	TBC	39.07	0.001	real glue unknown, assuming Araldite 2011
	Pixel Chip	50	Si	9.37	0.053	To change to 66um thickness, to read ITS3 TDR
	Total (FPC+	Pixel chip)	•	0.102	
	Total FF	Conly		0.049	Note FPC material budget closer to Pixel chip	
	Total Fi	Conly			(0.053%X))	


SVT Disks (ED/HD0-4)

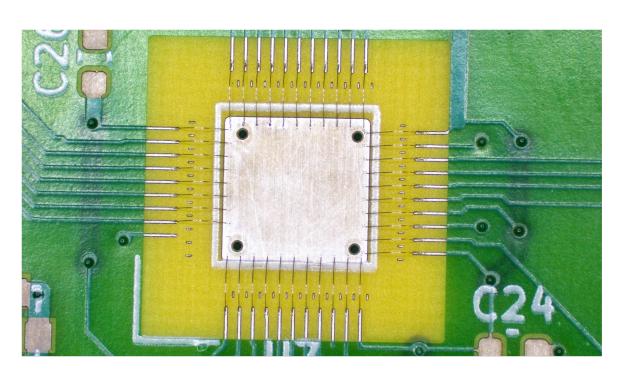
ePl

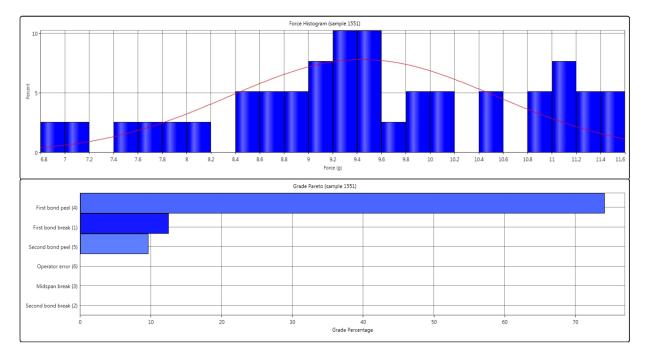
Disks (5 electron + 5 hadron going direction):


- EIC large area sensors (EIC-LAS) with design modified based on ITS3, mounted on conventional structure with CF support and integrated air cooling
- AncASIC for sensor bias, serial power and slow control
- Outer radii of 25 and 40 cm
- $X/X_0 \sim 0.25\%$


IBERT Test on OMNI

Based on XEM8320 FPGA evaluation boards with Artix Ultrascale+ AU25P FPGA;


Scan eye plot for each differential lines @10Gbps:


- Open area
- Bit error ratio

Wire-bonding and Pull Tests on OMNI

• Number of tests: 39

• Mean - 3 * standard deviation: 5.7782 g

• Minimum load: 6.9011 g

• Maximum load: 11.570 g

• Mean: 9.5195 g

• Standard Deviation: 1.2471 g

FPC Summary and Plan

- UK colleagues have been working with LTU to produce FPC prototypes for OB
 - LTU: provided main and bridge FPC (took ~9 months to design/produce). SMD soldering through flex-mounts (page 14)
 - UK: issue with spTAB under investigation; issue with wire-bonding on Al+polyimide foil, improved after bonder tuning; no signal test yet
 - Goal at LBL with LTU: check soldering to connect main and bridge FPCs; develop tooling and assembly procedure; validate power/signal integrity
- LBL has been working with OMNI to produce Al FPC prototypes (two iterations already)
 - First iteration:
 - good wire-bonding results
 - Second iteration:
 - Implemented Cu-plated soldering pads
 - Implemented through-vias to connect two Al layers
 - Improved signal transmission with Erlon528k, 12/14 mils traces over 25 cm: ~60%@4 GHz, passed IBERT@10Gbps
 - Third iteration to check:
 - Power (DC current) transmission
 - Signal transmission integrity and cross-talk with 6/6, 7/7, 8/8 mil traces and different grounding
 - Flexibility

5/20/25 Zhenyu Ye