LEGEND

Large Enriched Germanium Experiment for Neutrinoless BB Decay

Michael Willers

LBNL / NSD - 08.10.2019

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Status of LEGEND

The Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay

53 institutions, ~ 250 scientists

LEGEND mission: "The collaboration aims to develop a phased, ⁷⁶Ge based doublebeta decay experimental program with **discovery potential** at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."

The LEGEND Experiment

Choose best technologies based on GERDA and MAJORANA DEMONSTRATOR and others Increase mass towards 1000kg in phased approach

LEGEND-200

- 200 kg of HPGe detectors
- BG goal: 0.6 cts / (FWHM t yr)
- Update to existing infrastructure at LNGS

Strategy

LEGEND-1000

- 1000 kg of HPGe detectors
- BG goal < 0.1 cts / (FWHM t yr)
- Location TBD → required depth under investigation

⁷⁶Ge-based 0νββ decay search

- $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2\text{e}^{-1}$ $Q_{\beta\beta} = 2039 \text{ keV}$
- Enrichment to > 88% in ⁷⁶Ge possible
- Very high detection efficiency \rightarrow source = detector
- High density material $\rightarrow \beta\beta$ are point like → backgrounds can be discriminated and rejected
- Intrinsically pure material \rightarrow low background
- Excellent energy resolution \rightarrow 2.2 - 3 keV FWHM at Q_{ββ} $\rightarrow 2\nu\beta\beta$ background rejection

4

Michael Willers (LBL) - NSD Staff Meeting

Best of MAJORANA DEMOSTRATOR and GERDA

MAJORANA DEMONSTRATOR @ SURF

- Radiopurity of nearby parts (FETs, cables, Cu mounts, etc.)
- Low noise electronics improves pulse shape discrimination
- Low energy threshold (helps reject background & extended low-energy physics program)

GERDA @ LNGS

- Detectors (enr76Ge) in liquid argon (LAr)
- LAr acts as an active shield (no Pb)
 - → background tagging by LAr scintillation light & coincident signals

Both:

Clean fabrication techniques Control of surface exposure (cosmogenic activation) Development of large point-contact HPGe detectors Lowest background and best resolution 0νββ decay experiments

The LEGEND-200 Setup

• Water tank & modified cleanroom from GERDA

The LEGEND-200 Setup

- Water tank & modified cleanroom from GERDA
- Upgraded cryostat (lock, cables)
- New detector array (200kg) and improved LAr veto

LEGEND-200 background projections

Background goal < $2 \cdot 10^{-4}$ cts / (keV kg year)

- Expected upper limit of total background contributions from 238U chain, ²³²Th chain and 40K (all components)
- Background reduction strategy improves background at Q_{BB} by three orders of magnitude

LEGEND-200 background reduction strategy

LEGEND-200 background reduction

GERDA, MAJORANA DEMONSTRATOR and in dedicated tests

- Improved radiopurity levels (cables, electro-formed Cu, PTFE, ...)
- Increased detector mass \rightarrow leads to proportional reduction from near-by parts → better surface to volume ratio
- Higher purity LAr → increased light yield & attenuation length
- Improved scintillation light readout
- Reduction of electronic noise → to improved PSD
- Optimised pulse-shape analysis for surface events

Feasibility of reducing the background from ⁴²K, ²¹⁴Bi, ²⁰⁸Tl has been shown in

Michael Willers (LBL) - NSD Staff Meeting

LEGEND-200 background projections

Background index < (0.7 - 2) 10⁻⁴ cts / (keV kg year) or < (0.2 - 0.5) cts / (FWHM ton year) at $Q_{\beta\beta}$

→ LEGEND-200 background goals will be met!

- Simulations based on experimental data and material assays.
- Background rate **after** cuts: detector anti-coincidence, liquid Argon veto, PSD
 - Surface events from β and α interactions expected to be significant contribution

LEGEND-200 Germanium detectors

 4 types of HPGe detectors from MAJORANA DEMONSTRATOR and GERDA Production of new enriched material and inverted coaxial detectors ongoing

LEGEND-200 - Inverted coaxial detectors

LEGEND-200 - Inverted coaxial detectors

Semi-coaxial

- complicated signal shapes
 → less rejection power
- large p+ surface
 → more sensitive to contamination
- large mass (2-3 kg)
 → less nearby parts

BEGe & PPC

- Small mass
 - → many readout channels & cables 🡎
- Excellent PSD performance
 - ightarrow rejection of multi-site and surface events ightarrow

LEGEND-200 - Inverted coaxial detectors

Semi-coaxial

- complicated signal shapes \rightarrow less rejection power \checkmark
- large p+ surface \rightarrow more sensitive to contamination $\overline{\mathbf{F}}$
- large mass (2-3 kg) → less nearby parts 🤙

BEGe & PPC

- Small mass
 - → many readout channels & cables \
- Excellent PSD performance
 - -> rejection of multi-site and surface events 👍

·0.8

0.4

·0.2

ΗV

Inverted coaxial

- Large mass \rightarrow less nearby parts \rightarrow lower background \downarrow
- Good PSD performance with small p+ contact 🤙

LEGEND-200 - Understanding surface events

- ^{42}K in liquid Argon β -decays with $Q_{\beta}\sim 3.5~MeV$
- α (~ 5 MeV) can penetrate into the active volume only at the p+ contact, the groove of BEGe or at the passivated surface of PPCs
- → partial charge collection of the α or β energy can lead to signal at $Q_{\beta\beta}$

LEGEND-200 - Understanding surface events

Am241 source

GALATEA @ MPP

TUBE @ TUM

CAGE @ UW

LBL

UNC

- ^{42}K in liquid Argon β -decays with $Q_{\beta}\sim 3.5~MeV$
- α (~ 5 MeV) can penetrate into the active volume only at the p+ contact, the groove of BEGe or at the passivated surface of PPCs
- → partial charge collection of the α or β energy can lead to signal at $Q_{\beta\beta}$
- Multiple characterisation measurements currently ongoing to understand signal shapes and develop analysis routines (currently taking data with PPC detector in GALATEA)
- Several new setups under construction or planned

LEGEND-200 - Front-End Electronics

- Differential output driving ~10 m cable
- 7 Ch / board
- Clean PCB \rightarrow Kapton / Cuflon

Combine Liquid Argon-operated preamplifier of GERDA with ultra-clean Low Mass Front-End of MAJORANA DEMONSTRATOR

→ Low Mass Front-End (LMFE) developed by **Berkeley Lab** \rightarrow Charge sensitive preamplifier (CC4) developed by **University of Milan**, Italy

Amorphous germanium feedback resistor R_f (few G Ω in LAr)

Feedback and pulser (C_F and C_P): stray capacitance between traces

Bare die JFET: Moxtek MX11

Sputtered Ti/Au traces

Fused silica substrate / Suprasil

+ new cables (Axon pico-Coax) & connectors + new LMFE mount

LEGEND-200 - Front-End Electronics

Amorphous germanium feedback resistor R_f (few G Ω in LAr)

Feedback and pulser (C_F and C_P): stray capacitance between traces

Bare die JFET: Moxtek MX11

Sputtered Ti/Au traces

Fused silica substrate /

+ new cables (Axon pico-Coax) & connectors + new LMFE mount

LEGEND-200 - Front-End Electronics / Integration testing

Liquid Argon bench-test at LBL

LMFE in ULTEM mount

1.5m Axon pico coax cables

- Warm & cold (77K / 87K) electronics characterisation
- Optimisation of CSA parameters
- Also:
 - aGe feedback resistor characterisation
 - JFET characterisation / test \bullet (e.g. bubbling)

- Dedicated test stand at TUM

LBNL R&D activities for LEGEND-200

 LBNL provides unique expertise in low-noise, low-background readout electronics for LEGEND

Low Mass Front End

→ Development, testing, production & final assembly

→ ASIC R&D for LEGEND-1000 (LDRD Barton)

Long HV cable

→ development of a long (10m) flat cable for HV (+ testing & QA) (*Drobizhev*)

"Cryostat head electronics"

→ Development, testing & production of CSA -DAQ interface, controller board, low voltage power supplies (*Turqueti*)

Present status of LEGEND-200

- Nearly all funding in place for LEGEND-200.
- All isotope is either in-hand, or on-order.
- Ge detector fabrication from two suppliers has started.
 - Detectors at HADES, ORNL and SURF in preparation. \bullet
 - ~ 80 inverted coax detectors (1.5-2 kg), ~ 150 kg
 - 28 BEGe's (0.7 kg) about 20 kg
 - 5 ICPC's (2.0 kg) about 10 kg
 - 35 PPC's (0.8 kg) about 28 kg
 - Semi Co-Ax detectors (either use as is, or recycle) about 15 kg
 - Total ~200 kg
- Front-end electronics and detector units \rightarrow test ongoing.
- Lock and new deployment starting soon.
- _Ar veto is under construction with all parts delivered or on order.
- Assay program is well underway.

\rightarrow LEGEND-200 is on track to start data taking mid 2021.

Michael Willers (LBL) - NSD Staff Meeting

Outlook: LEGEND-1000 Design criteria:

- \rightarrow LEGEND-200 will provide additional information and allow better estimates!
- Background requirement for LEGEND-1000 ~ 6x lower than LEGEND-200 \rightarrow reduce U/Th by optimising array geometry, reduce inactive materials, use larger HPGe detectors and better LAr light collection + use cleaner materials \rightarrow eliminate ⁴²Ar background by using Ar from underground sources near detectors \rightarrow reduce surface α contamination by improving assembly & handling process
- Required depth of host lab under investigation

Baseline design:

- 4 independent payloads
- underground Ar
- tank

Current background models have large uncertainties due to the already very low background

Staged approach \rightarrow separate 1000kg of enriched detectors into individual payloads (few 100kg)

- Payloads surrounded by
- Payloads surrounded by water
- \rightarrow additional designs under investigation
- Michael Willers (LBL) NSD Staff Meeting

LEGEND - Schedule

LEGEND-1000 Design/Build 2021-2029

Sensitivity for limit setting

⁷⁶Ge (88% enr.)

- Goal to cover inverted ordering \rightarrow sensitivity for $m_{\beta\beta} = 17 \text{ meV}$
- With worst case nuclear matrix element and unquenched g_A \rightarrow sensitivity for T_{1/2} = 10²⁸ yr
- LEGEND-1000 should cover inverted ordering
- Background requirement for discovery is more stringent than for limit setting

Summary

- LEGEND builds on the success of Gerda and Majorana in the search for neutrinoless double-beta decay with 76Ge
- First stage **LEGEND-200** in existing infrastructure
 - funding secured
 - enriched material and detector production ongoing
 - construction starts next year
 - goal: 0.6 cts/(FWHM·t·yr) background and 10²⁷ yr T_{1/2} sensitivity for limit setting
- Design studies for LEGEND-1000 is ongoing
 - goal: 0.1 cts/(FWHM·t·yr) background and 10²⁸ yr T_{1/2} sensitivity for limit setting

Acknowledgements

- •We appreciate the support of our sponsors:
 - German Federal Ministry for Education and Research (BMBF)
 - German Research Foundation (DFG), Excellence Cluster Universe
 - German Max Planck Society (MPG)
 - U.S. National Science Foundation, Nuclear Physics (NSF)
 - U.S. Department of Energy, Office of Nuclear Physics (DOE-NP)

 - Italian Instituto Nazionale di Fisica Nucleare (INFN)
 - Swiss National Science Foundation (SNF)
 - Polish National Science Centre (NCN)
 - Foundation for Polish Science
 - Russian Foundation for Basic Research (RFBR)
 - Research Council of Canada, Natural Sciences and Engineering
 - Canada Foundation for Innovation, John R. Evans Leaders Fund
- •We thank our hosts and colleagues at LNGS

• U.S. Department of Energy, Through the LANL, LBNL & ORNL LDRD programs (LDRD)

We thank the ORNL Leadership Computing Facility and the LBNL NERSC Center

Thank you for your attention!