Impact of new minimum energy threshold of FEMC for soft photon detection in charmonium production

Minjung Kim (LBNL) 23 June. 2025

Charmonium spectroscopy

Soft photon decay often found in charmonium spectroscopy including exotica

- Also found in various exclusive processes: photon-phomeron and double-pomeron interactions as well as $\gamma\gamma$
- Acceptance sensitive to minimum energy threshold of FEMC
- Example with $J/\psi \rightarrow \eta_c + \gamma$
 - ♦ J/ψ meson: 3096 MeV, $0^{-}(1^{--})$
 - ♦ η_c meson: 2984 MeV, $0^+(^{-+})$
 - ◆ BR~1.4% of soft photon (~ 100 MeV) with non-isotropic angular distribution
 - Goal : Estimate acceptance loss in coherent photoproduction of $J/\psi \rightarrow \eta_c + \gamma$

$J/\psi \rightarrow \eta_c + \gamma$ in ep collisions at 10×130 GeV

- Coherent J/ψ photoproduction generated with eSTARLight
- + ep collisions at 10×130 GeV
- ★ Coherent J/ψ photoproduction
 in 0 < Q² < 0.01 GeV²,
 decaying intoJ/ψ → η_c + γ
- Isotropic angular distribution assuming unpolarized J/ψ

Counts (log scale) 10⁻²

 10^{-4}

Acceptance of soft photon from $J/\psi \rightarrow \eta_c + \gamma$ in ep collisions at 10 × 130 GeV

Photon in EMC acceptance eta < 3.5 & E > 100 MeV	78.56%
Photon in FEMC acceptance 1.4 < eta < 3.5 & E > 100 MeV	22.75%
Fraction of photon rejected due to new threshold (hashed area)	2.62%

scale)

(log

Counts

Impact of J/ψ polarization

Photon in EMC acceptance

Photon in FEMC acceptance

Fraction of photon rejected due to new threshol (hashed area)

	unpolarized (P(θ) = constant))	Fully polarized (P(θ) = 1 + cos ² (θ))
	78.56%	80.83%
	22.75%	22.95%
bld	2.62%	2.18%

Q² Dependence

Photon in EMC acceptance

Photon in FEMC acceptance

Fraction of photon rejected due to new threshold (hashed area)

	0 < Q ² < 0.01 GeV ²	1 GeV ² < Q ² < 2 GeV ²
	78.56%	77.98%
	22.75%	18.37%
ld	2.62%	2.61%

$J/\psi \rightarrow \eta_c + \gamma$ in e-Au collisions at 10×100 GeV

Impact on J/ψ acceptance in ep collisions

pt ratio

rapidity

Rapidity ratio

Acceptance as a function of J/ψ
 transverse momentum and
 rapidity

 Assuming eta_c is fully reconstructed (acc. X eff. = 1), acceptance is calculated by # of J/ψ having soft photons in EMC

of J/ψ generated

 New minimum energy threshold of FEMC results O(~2%)
 reduction of acceptance overall, but shows significant rapidity
 dependence

Impact on J/ψ acceptance in eAu collisions

• Acceptance as a function of J/ψ transverse momentum and rapidity

Assuming eta_c is fully reconstructed (acc. X eff. = 1), acceptance is calculated by # of J/ψ having soft photons in EMC

of J/ψ generated

New minimum energy threshold of FEMC results O(~2%) reduction of acceptance overall, but shows rapidity dependence

18 GeV e on 100 GeV/n gold will have a rapidity distribution more like the ep runs.

Summary and conclusion

- Using the $J/\psi \rightarrow \eta c + \gamma$ channel as a benchmark, acceptance loss for soft photons introduced by the new minimum energy threshold of the Forward Electromagnetic **Calorimeter (FEMC) was studied.**
- ★ A reduction in photon acceptance of ~2-3% is observed. This effect shows a significant dependence on the kinematics of the mother J/ψ particle, particularly its rapidity.
- \bullet Acceptance loss does not reduce the overall rapidity coverage for the reconstructed J/ ψ , which is important as full coverage is essential for nuclear structure studies over a wide Bjorken-x range. (Caveat: acceptance and efficiency of nc was not considered)
- Impact observed is not unique to the this channel. It represents a general challenge for studies of charmonium radiative decays, as many of these processes emit photons in a similar energy range.

