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BOUND STATES: QUARKONIA

We can study QGP at HICs using heavy flavor probes
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undergo multiple scattering and are confined back into hadrons in a very short time.
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RAA v2
Ds  (GeV)Tp

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

AAR

0

0.2

0.4

0.6

0.8

1

1.2

1.4
T) = 1.5πD (2
T) = 3πD (2
T) = 6πD (2
T) = 12πD (2
T) = 24πD (2

(a)

 (GeV)Tp
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

) T
 (p 2v

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
(b)LO QCD

FIG. 4: (Color online) (a) The nuclear modification factor RAA for charm quarks for representa-

tive values of the diffusion coefficient. (b) v2(pT ) for charm quarks for the same set of diffusion

coefficients given in the legend in (a). In perturbation theory, D× (2πT ) ≈ 6 (0.5/αs)2. The model

for the drag and fluctuation coefficients is referred to as LO QCD in the text. The band estimates

the light hadron elliptic flow for impact parameter b = 6.5 fm using STAR data [2].
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Figure 3.1: Friction coefficients for charm-quark diffusion in the QGP as a function of three-momentum for three different temperatures
from various model calculations: black lines: pQCD Born diagrams with ↵s=0.4, multiplied with and overall K-factor of 5, blue lines: T -
matrix results using the internal-energy (U) as potential proxy [20, 89], pink lines: pQCD with running coupling constant and reduced Debye
mass [24, 25], purple lines: quasiparticle model with coupling constant fitted to the lQCD EOS [63], and green lines: D-meson resonance
model [26]; figure taken from Ref. [61].

is less pronounced than may have been expected. It turns out, though, that the force (derivative of the potential)
is very similar between U and VSCS at distances of around 1 fm at T=194 MeV, and even slightly larger for VSCS for
r >⇠ 0.7 fm at T=258 MeV. The long-range parts of the force are therefore instrumental for the zero-momentum limit of
A(p). These calculations corroborate that the zero-momentum limit of the friction coefficient (which also determines the
spatial diffusion coefficient) indeed reflects the long-range properties of the interaction. In part, this is so because for a
long-range force the heavy quark can interact with a larger number of thermal partons in its vicinity.

Another issue of interest to better understand the microscopic mechanisms of HQ transport in the QGP is the
manifestation of both nonperturbative and quantum effects (which are rather closely related as will be seen in the
following; e.g., a large interaction strength generates large collisional widths implying broad spectral functions). Toward
this end, four cases have been set up in Ref. [79] within the SCS, by systematically switching off various components in
the calculation of the charm-quark friction coefficient. In the first one, the string interactions in the input potential have
been switched off (by putting the string tension in Eq. (2.5) to zero), leaving only the color-Coulomb interactions (with
↵s=0.27). Compared to the full result, a reduction of the friction coefficient by up to a factor of ⇠10 at low momentum
and small temperatures has been found, cf. Fig. 3.3. On the other hand, for momenta above 10GeV, and especially at
the higher temperatures, the results of the Coulomb-only calculation are close to the full ones, i.e., the nonperturbative
interactions have ceased. In the second case, the ladder resummations of the T -matrix are switched off, leaving only
the Born terms as the scattering amplitudes. This leads to surprisingly large friction coefficients, which even at low
momenta and temperatures are within ca. 20% of the full results. Clearly, the string Born term is responsible for this
result. In the third case, the full T -matrices are calculated, including both color-Coulomb and string interactions, but
the thermal partons, as in the previous two cases, are still assumed to be quasiparticles, i.e., the friction coefficients are
evaluated with �-functions for the parton spectral functions enforcing the on-shell condition for the parton energies at
given momentum. In this case, a reduction of the friction coefficients has been found, relative to the Born-case, which
is most pronounced again for low temperatures and momenta. The reason for this is that the ladder resummation in
the T -matrix generates bound states, especially at low temperatures, which are not accessible in on-shell heavy-light
scattering kinematics. Finally, case 4 is the full result, where the broad spectral functions of the in-medium thermal
partons, as well as for the outgoing charm-quark, are accounted for. This is critical for the charm quarks to access the
large resonant interaction strength of the broad sub-threshold pre-hadronic bound states, recall Fig. 2.2. In this way the
quantum uncertainty in the energy spectra of both the constituents and their scattering amplitudes plays a key role in
producing large friction coefficients at low momenta and temperatures.

3.2. Quarkonium Dissociation Rates
The central quantity in the description of quarkonium (Q) transport in the QCD medium is the inelastic reaction rate
of the various bound states. To leading order in the strong coupling constant, the rate in the QGP is given by gluo-
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Model predictions
Multiple models predict very different values for these 
transport coefficients. 
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Figure 3.5: A recent compilation of charm-quark diffusion coefficients in the QGP from various approaches: quenched lQCD [100, 101, 102],
pQCD Born diagrams with either fixed [3, 4] or temperature-dependent coupling [22], QPM using using either a Langevin or Boltzmann-
transport extraction [103], DQPM [64], T -matrix approach with either free- or internal-energy potential [20], pQCD* [24, 104], AdS/CFT
correspondence [105], Bayesian fits to HF data [106], and hadronic calculations from Refs. [76, 82] discussed in Sec. 2.5; figure taken from
Ref. [7].

As stated above, it is of great interest to study the relations of the HF transport coefficient to other transport properties
of the QCD medium. Here, we will focus on the approaches that can compute the shear viscosity (and EoS) within the
same framework as Ds, paralleling the discussion in Sec. 2.4. For the QPM [63], the coupling constant extracted from the
fit to the EoS has been injected into pQCD ansatz for the viscosity [109],

⌘ =
⌘1T

3

g4 ln
⇣

µ⇤
gT

⌘ , (3.5)

where the parameters ⌘1 and µ⇤ have been to constrained to recover the high-temperature pQCD limit and requiring the
minimum of the resulting ⌘/s(T ) to reach 1/4⇡. The predictive power then lies in the temperature dependence of this
quantity, shown by the dashed lines in the left panel of Fig. 3.6. Alternatively, an effective 1/g2 dependence has been
considered (motivated by a relaxation time that scales with the collisional width [110, 111]), which leads to a significantly
weaker temperature dependence (solid lines in the left panel of Fig. 3.6). In the T -matrix approach, the viscosity has
been computed using the Kubo formula [42],
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which directly employs the thermal-parton spectral functions from the selfconsistent solutions of the WCS or SCS (recall
Fig. 2.7). The pertinent ⌘/s ratio is plotted in units of 1/4⇡ in the right panel of Fig. 3.6. In the WCS, the ⌘/s ratio
reaches down to twice the conjectured lower bound at low QGP temperatures, rising by a factor of ⇠3 at T=400 MeV (or
⇠2.5Tpc). In the WCS, the ratio is about a factor of 2 larger at low T , but does not rise much with temperature. This
is quite different from the (scaled) HQ diffusion coefficient, which differs by a factor of 5 between the WCS and SCS at
low temperature, while at T=400 MeV they are comparable. This suggests that the absolute value of Ds(2⇡T ) is a better
discriminator between a strongly and a weakly coupled system than ⌘/s. In Ref. [4], the double ratio, [2⇡TDs)]/[⌘/s],
has been proposed as a quantitative measure of the strong-coupling nature of the QGP, varying between values of 2.5
for a perturbative scenario and as low as 1 from the strong-coupling limit of conformal field theory [30]. Evaluating this
ratio for the WCS T -matrix results shown in Fig. 3.6 right, one finds ⇠1 for the lowest T and approximately 2.5 at the
highest T , while for the WCS the ratio is approximately constant at 2.5 [42].
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Figure 2.1: Tree-level diagrams for HQ scattering off gluons in the s-, t- and u-channel (from left to right), and off light quarks where only the
t-channel is available.

2. Heavy-Flavor Interactions in QCD Matter
The basic building block in a quantum many-body description of HQ systems in the QGP is the two-body scattering
amplitude of a heavy quark on the constituents of the thermal bath, for both on-shell kinematics (e.g., in the semi-classical
transport treatment), or off-shell when embedded into bound states. We will discuss these amplitudes from the pQCD
perspective in Sec. 2.1 and in nonperturbative approaches with focus on the thermodynamic T -matrix approach in Sec. 2.2 .
Since we expect very high collision rates in a strongly coupled quark-gluon plasma (sQGP), with transport properties close
to pertinent quantum lower bounds, the spectral functions of the thermal-medium partons will acquire large collisional
widths, comparable to their masses. This suggests that off-shell treatments are also needed in the calculations of in-
medium selfenergies and transport coefficients. Even for charm quarks, the widths may not be negligible relative to their
mass, while for quarkonium properties the relevant scale is the in-medium binding energy which may quickly be exceeded
by the collisional width as temperature increases, leading to a melting of the bound state. In a nonperturbative system,
it is therefore essential to constrain the calculated spectral functions with information from lQCD as much as possible.
This will be addressed in Sec. 2.3, followed in Sec. 2.4 by a discussion of the QCD medium properties that may emerge
and have to be fed back into the HQ interactions. We end this chapter with a brief survey on the investigation of HF
diffusion in hadronic matter in Sec. 2.5.

2.1. Perturbative QCD
The basic entity for evaluating HQ interactions in the QGP is the two-body amplitude for elastic scattering off the
thermal partons in the heat bath. To leading order in the strong coupling constant, ↵s, the pertinent Feynman diagrams
encompass s-, t- and u-channels for HQ-gluon scattering, as well as a t-channel for HQ scattering off up, down and
strange quarks (q = u, d and s, respectively). Since the s and u-channel amplitudes are suppressed by the HQ mass in the
intermediate HQ propagator, the dominant contributions arise from the two t-channel diagrams, specifically HQ-gluon
scattering due to the larger color-charge factor the three-gluon vertex. In vacuum, both diagrams exhibit an infrared
singularity for forward scattering, which is, however, naturally regularized through the appearance of a Debye screening
mass, µD ⇠ gT , in the t-channel gluon exchange propagator. When utilizing these diagrams to compute the thermal
relaxation time of charm quarks in the QGP [3, 18, 19, 20], one finds rather long thermalization times, ⌧c � 20fm/c, for
temperatures T  300MeV and a strong coupling constant of ↵s=0.3-0.4. The results also depend on the precise value
of the charm-quark mass in the medium, since in leading order one expects ⌧c to be proportional to mc. Converting the
relaxation time into a spatial diffusion coefficient, Ds = ⌧c(mQ/T ), and normalizing it to the thermal wavelength, 1/2⇡T ,
one finds values of Ds(2⇡T ) ' 35.

A complete next-to-leading order (NLO) calculation has been carried out in Ref. [21], requiring various types of
resummations including corrections from very soft HQ momenta, p ' µB , that lead to a non-analytic behavior in the
strong coupling constant. The final result shows that NLO corrections to the LO result are very large, even at relatively
small coupling, e.g., more than a factor of 5 for ↵s=0.2. This implies that the perturbative series is not under control
and cannot be used to assess meaningful corrections to the leading-order result.

Other corrections to the leading-order Born diagrams have been investigated. In Refs. [22, 23] the energy-momentum
dependent polarization tensors have been inserted into the t-channel gluon propagators in hard-thermal-loop approxima-
tion. A sizable increase in the interaction strength has been found, which can decrease the HQ diffusion coefficient by a
factor of ⇠2-3 or more , (see, e.g., Fig. 4 in Ref. [5]) and also affects the momentum dependence of the relaxation rate,
relative to the LO results. In Refs. [24, 25] the running of the QCD coupling constant has been introduced not only as
a function of temperature, but also as a function of the momentum transfer, Q2 of the exchanged gluon, reaching values
of close to 1 in the limit of Q2 ! 0. In addition, it has been argued that a selfconsistent determination of the Debye
mass, µ̃2

D
⇠ ↵s(µ̃2

D
)T 2, leads to much reduced values of about a factor ⇠2.5 relative to the usual µD ⇠ gT with a fixed

5

gQ → gQ
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factor of ⇠2-3 or more , (see, e.g., Fig. 4 in Ref. [5]) and also affects the momentum dependence of the relaxation rate,
relative to the LO results. In Refs. [24, 25] the running of the QCD coupling constant has been introduced not only as
a function of temperature, but also as a function of the momentum transfer, Q2 of the exchanged gluon, reaching values
of close to 1 in the limit of Q2 ! 0. In addition, it has been argued that a selfconsistent determination of the Debye
mass, µ̃2
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Figure 2.1: Tree-level diagrams for HQ scattering off gluons in the s-, t- and u-channel (from left to right), and off light quarks where only the
t-channel is available.

2. Heavy-Flavor Interactions in QCD Matter
The basic building block in a quantum many-body description of HQ systems in the QGP is the two-body scattering
amplitude of a heavy quark on the constituents of the thermal bath, for both on-shell kinematics (e.g., in the semi-classical
transport treatment), or off-shell when embedded into bound states. We will discuss these amplitudes from the pQCD
perspective in Sec. 2.1 and in nonperturbative approaches with focus on the thermodynamic T -matrix approach in Sec. 2.2 .
Since we expect very high collision rates in a strongly coupled quark-gluon plasma (sQGP), with transport properties close
to pertinent quantum lower bounds, the spectral functions of the thermal-medium partons will acquire large collisional
widths, comparable to their masses. This suggests that off-shell treatments are also needed in the calculations of in-
medium selfenergies and transport coefficients. Even for charm quarks, the widths may not be negligible relative to their
mass, while for quarkonium properties the relevant scale is the in-medium binding energy which may quickly be exceeded
by the collisional width as temperature increases, leading to a melting of the bound state. In a nonperturbative system,
it is therefore essential to constrain the calculated spectral functions with information from lQCD as much as possible.
This will be addressed in Sec. 2.3, followed in Sec. 2.4 by a discussion of the QCD medium properties that may emerge
and have to be fed back into the HQ interactions. We end this chapter with a brief survey on the investigation of HF
diffusion in hadronic matter in Sec. 2.5.

2.1. Perturbative QCD
The basic entity for evaluating HQ interactions in the QGP is the two-body amplitude for elastic scattering off the
thermal partons in the heat bath. To leading order in the strong coupling constant, ↵s, the pertinent Feynman diagrams
encompass s-, t- and u-channels for HQ-gluon scattering, as well as a t-channel for HQ scattering off up, down and
strange quarks (q = u, d and s, respectively). Since the s and u-channel amplitudes are suppressed by the HQ mass in the
intermediate HQ propagator, the dominant contributions arise from the two t-channel diagrams, specifically HQ-gluon
scattering due to the larger color-charge factor the three-gluon vertex. In vacuum, both diagrams exhibit an infrared
singularity for forward scattering, which is, however, naturally regularized through the appearance of a Debye screening
mass, µD ⇠ gT , in the t-channel gluon exchange propagator. When utilizing these diagrams to compute the thermal
relaxation time of charm quarks in the QGP [3, 18, 19, 20], one finds rather long thermalization times, ⌧c � 20fm/c, for
temperatures T  300MeV and a strong coupling constant of ↵s=0.3-0.4. The results also depend on the precise value
of the charm-quark mass in the medium, since in leading order one expects ⌧c to be proportional to mc. Converting the
relaxation time into a spatial diffusion coefficient, Ds = ⌧c(mQ/T ), and normalizing it to the thermal wavelength, 1/2⇡T ,
one finds values of Ds(2⇡T ) ' 35.

A complete next-to-leading order (NLO) calculation has been carried out in Ref. [21], requiring various types of
resummations including corrections from very soft HQ momenta, p ' µB , that lead to a non-analytic behavior in the
strong coupling constant. The final result shows that NLO corrections to the LO result are very large, even at relatively
small coupling, e.g., more than a factor of 5 for ↵s=0.2. This implies that the perturbative series is not under control
and cannot be used to assess meaningful corrections to the leading-order result.

Other corrections to the leading-order Born diagrams have been investigated. In Refs. [22, 23] the energy-momentum
dependent polarization tensors have been inserted into the t-channel gluon propagators in hard-thermal-loop approxima-
tion. A sizable increase in the interaction strength has been found, which can decrease the HQ diffusion coefficient by a
factor of ⇠2-3 or more , (see, e.g., Fig. 4 in Ref. [5]) and also affects the momentum dependence of the relaxation rate,
relative to the LO results. In Refs. [24, 25] the running of the QCD coupling constant has been introduced not only as
a function of temperature, but also as a function of the momentum transfer, Q2 of the exchanged gluon, reaching values
of close to 1 in the limit of Q2 ! 0. In addition, it has been argued that a selfconsistent determination of the Debye
mass, µ̃2
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Figure 2.1: Tree-level diagrams for HQ scattering off gluons in the s-, t- and u-channel (from left to right), and off light quarks where only the
t-channel is available.

2. Heavy-Flavor Interactions in QCD Matter
The basic building block in a quantum many-body description of HQ systems in the QGP is the two-body scattering
amplitude of a heavy quark on the constituents of the thermal bath, for both on-shell kinematics (e.g., in the semi-classical
transport treatment), or off-shell when embedded into bound states. We will discuss these amplitudes from the pQCD
perspective in Sec. 2.1 and in nonperturbative approaches with focus on the thermodynamic T -matrix approach in Sec. 2.2 .
Since we expect very high collision rates in a strongly coupled quark-gluon plasma (sQGP), with transport properties close
to pertinent quantum lower bounds, the spectral functions of the thermal-medium partons will acquire large collisional
widths, comparable to their masses. This suggests that off-shell treatments are also needed in the calculations of in-
medium selfenergies and transport coefficients. Even for charm quarks, the widths may not be negligible relative to their
mass, while for quarkonium properties the relevant scale is the in-medium binding energy which may quickly be exceeded
by the collisional width as temperature increases, leading to a melting of the bound state. In a nonperturbative system,
it is therefore essential to constrain the calculated spectral functions with information from lQCD as much as possible.
This will be addressed in Sec. 2.3, followed in Sec. 2.4 by a discussion of the QCD medium properties that may emerge
and have to be fed back into the HQ interactions. We end this chapter with a brief survey on the investigation of HF
diffusion in hadronic matter in Sec. 2.5.

2.1. Perturbative QCD
The basic entity for evaluating HQ interactions in the QGP is the two-body amplitude for elastic scattering off the
thermal partons in the heat bath. To leading order in the strong coupling constant, ↵s, the pertinent Feynman diagrams
encompass s-, t- and u-channels for HQ-gluon scattering, as well as a t-channel for HQ scattering off up, down and
strange quarks (q = u, d and s, respectively). Since the s and u-channel amplitudes are suppressed by the HQ mass in the
intermediate HQ propagator, the dominant contributions arise from the two t-channel diagrams, specifically HQ-gluon
scattering due to the larger color-charge factor the three-gluon vertex. In vacuum, both diagrams exhibit an infrared
singularity for forward scattering, which is, however, naturally regularized through the appearance of a Debye screening
mass, µD ⇠ gT , in the t-channel gluon exchange propagator. When utilizing these diagrams to compute the thermal
relaxation time of charm quarks in the QGP [3, 18, 19, 20], one finds rather long thermalization times, ⌧c � 20fm/c, for
temperatures T  300MeV and a strong coupling constant of ↵s=0.3-0.4. The results also depend on the precise value
of the charm-quark mass in the medium, since in leading order one expects ⌧c to be proportional to mc. Converting the
relaxation time into a spatial diffusion coefficient, Ds = ⌧c(mQ/T ), and normalizing it to the thermal wavelength, 1/2⇡T ,
one finds values of Ds(2⇡T ) ' 35.

A complete next-to-leading order (NLO) calculation has been carried out in Ref. [21], requiring various types of
resummations including corrections from very soft HQ momenta, p ' µB , that lead to a non-analytic behavior in the
strong coupling constant. The final result shows that NLO corrections to the LO result are very large, even at relatively
small coupling, e.g., more than a factor of 5 for ↵s=0.2. This implies that the perturbative series is not under control
and cannot be used to assess meaningful corrections to the leading-order result.

Other corrections to the leading-order Born diagrams have been investigated. In Refs. [22, 23] the energy-momentum
dependent polarization tensors have been inserted into the t-channel gluon propagators in hard-thermal-loop approxima-
tion. A sizable increase in the interaction strength has been found, which can decrease the HQ diffusion coefficient by a
factor of ⇠2-3 or more , (see, e.g., Fig. 4 in Ref. [5]) and also affects the momentum dependence of the relaxation rate,
relative to the LO results. In Refs. [24, 25] the running of the QCD coupling constant has been introduced not only as
a function of temperature, but also as a function of the momentum transfer, Q2 of the exchanged gluon, reaching values
of close to 1 in the limit of Q2 ! 0. In addition, it has been argued that a selfconsistent determination of the Debye
mass, µ̃2
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Figure 2.1: Tree-level diagrams for HQ scattering off gluons in the s-, t- and u-channel (from left to right), and off light quarks where only the
t-channel is available.

2. Heavy-Flavor Interactions in QCD Matter
The basic building block in a quantum many-body description of HQ systems in the QGP is the two-body scattering
amplitude of a heavy quark on the constituents of the thermal bath, for both on-shell kinematics (e.g., in the semi-classical
transport treatment), or off-shell when embedded into bound states. We will discuss these amplitudes from the pQCD
perspective in Sec. 2.1 and in nonperturbative approaches with focus on the thermodynamic T -matrix approach in Sec. 2.2 .
Since we expect very high collision rates in a strongly coupled quark-gluon plasma (sQGP), with transport properties close
to pertinent quantum lower bounds, the spectral functions of the thermal-medium partons will acquire large collisional
widths, comparable to their masses. This suggests that off-shell treatments are also needed in the calculations of in-
medium selfenergies and transport coefficients. Even for charm quarks, the widths may not be negligible relative to their
mass, while for quarkonium properties the relevant scale is the in-medium binding energy which may quickly be exceeded
by the collisional width as temperature increases, leading to a melting of the bound state. In a nonperturbative system,
it is therefore essential to constrain the calculated spectral functions with information from lQCD as much as possible.
This will be addressed in Sec. 2.3, followed in Sec. 2.4 by a discussion of the QCD medium properties that may emerge
and have to be fed back into the HQ interactions. We end this chapter with a brief survey on the investigation of HF
diffusion in hadronic matter in Sec. 2.5.

2.1. Perturbative QCD
The basic entity for evaluating HQ interactions in the QGP is the two-body amplitude for elastic scattering off the
thermal partons in the heat bath. To leading order in the strong coupling constant, ↵s, the pertinent Feynman diagrams
encompass s-, t- and u-channels for HQ-gluon scattering, as well as a t-channel for HQ scattering off up, down and
strange quarks (q = u, d and s, respectively). Since the s and u-channel amplitudes are suppressed by the HQ mass in the
intermediate HQ propagator, the dominant contributions arise from the two t-channel diagrams, specifically HQ-gluon
scattering due to the larger color-charge factor the three-gluon vertex. In vacuum, both diagrams exhibit an infrared
singularity for forward scattering, which is, however, naturally regularized through the appearance of a Debye screening
mass, µD ⇠ gT , in the t-channel gluon exchange propagator. When utilizing these diagrams to compute the thermal
relaxation time of charm quarks in the QGP [3, 18, 19, 20], one finds rather long thermalization times, ⌧c � 20fm/c, for
temperatures T  300MeV and a strong coupling constant of ↵s=0.3-0.4. The results also depend on the precise value
of the charm-quark mass in the medium, since in leading order one expects ⌧c to be proportional to mc. Converting the
relaxation time into a spatial diffusion coefficient, Ds = ⌧c(mQ/T ), and normalizing it to the thermal wavelength, 1/2⇡T ,
one finds values of Ds(2⇡T ) ' 35.

A complete next-to-leading order (NLO) calculation has been carried out in Ref. [21], requiring various types of
resummations including corrections from very soft HQ momenta, p ' µB , that lead to a non-analytic behavior in the
strong coupling constant. The final result shows that NLO corrections to the LO result are very large, even at relatively
small coupling, e.g., more than a factor of 5 for ↵s=0.2. This implies that the perturbative series is not under control
and cannot be used to assess meaningful corrections to the leading-order result.

Other corrections to the leading-order Born diagrams have been investigated. In Refs. [22, 23] the energy-momentum
dependent polarization tensors have been inserted into the t-channel gluon propagators in hard-thermal-loop approxima-
tion. A sizable increase in the interaction strength has been found, which can decrease the HQ diffusion coefficient by a
factor of ⇠2-3 or more , (see, e.g., Fig. 4 in Ref. [5]) and also affects the momentum dependence of the relaxation rate,
relative to the LO results. In Refs. [24, 25] the running of the QCD coupling constant has been introduced not only as
a function of temperature, but also as a function of the momentum transfer, Q2 of the exchanged gluon, reaching values
of close to 1 in the limit of Q2 ! 0. In addition, it has been argued that a selfconsistent determination of the Debye
mass, µ̃2
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Figure 2.1: Tree-level diagrams for HQ scattering off gluons in the s-, t- and u-channel (from left to right), and off light quarks where only the
t-channel is available.

2. Heavy-Flavor Interactions in QCD Matter
The basic building block in a quantum many-body description of HQ systems in the QGP is the two-body scattering
amplitude of a heavy quark on the constituents of the thermal bath, for both on-shell kinematics (e.g., in the semi-classical
transport treatment), or off-shell when embedded into bound states. We will discuss these amplitudes from the pQCD
perspective in Sec. 2.1 and in nonperturbative approaches with focus on the thermodynamic T -matrix approach in Sec. 2.2 .
Since we expect very high collision rates in a strongly coupled quark-gluon plasma (sQGP), with transport properties close
to pertinent quantum lower bounds, the spectral functions of the thermal-medium partons will acquire large collisional
widths, comparable to their masses. This suggests that off-shell treatments are also needed in the calculations of in-
medium selfenergies and transport coefficients. Even for charm quarks, the widths may not be negligible relative to their
mass, while for quarkonium properties the relevant scale is the in-medium binding energy which may quickly be exceeded
by the collisional width as temperature increases, leading to a melting of the bound state. In a nonperturbative system,
it is therefore essential to constrain the calculated spectral functions with information from lQCD as much as possible.
This will be addressed in Sec. 2.3, followed in Sec. 2.4 by a discussion of the QCD medium properties that may emerge
and have to be fed back into the HQ interactions. We end this chapter with a brief survey on the investigation of HF
diffusion in hadronic matter in Sec. 2.5.

2.1. Perturbative QCD
The basic entity for evaluating HQ interactions in the QGP is the two-body amplitude for elastic scattering off the
thermal partons in the heat bath. To leading order in the strong coupling constant, ↵s, the pertinent Feynman diagrams
encompass s-, t- and u-channels for HQ-gluon scattering, as well as a t-channel for HQ scattering off up, down and
strange quarks (q = u, d and s, respectively). Since the s and u-channel amplitudes are suppressed by the HQ mass in the
intermediate HQ propagator, the dominant contributions arise from the two t-channel diagrams, specifically HQ-gluon
scattering due to the larger color-charge factor the three-gluon vertex. In vacuum, both diagrams exhibit an infrared
singularity for forward scattering, which is, however, naturally regularized through the appearance of a Debye screening
mass, µD ⇠ gT , in the t-channel gluon exchange propagator. When utilizing these diagrams to compute the thermal
relaxation time of charm quarks in the QGP [3, 18, 19, 20], one finds rather long thermalization times, ⌧c � 20fm/c, for
temperatures T  300MeV and a strong coupling constant of ↵s=0.3-0.4. The results also depend on the precise value
of the charm-quark mass in the medium, since in leading order one expects ⌧c to be proportional to mc. Converting the
relaxation time into a spatial diffusion coefficient, Ds = ⌧c(mQ/T ), and normalizing it to the thermal wavelength, 1/2⇡T ,
one finds values of Ds(2⇡T ) ' 35.

A complete next-to-leading order (NLO) calculation has been carried out in Ref. [21], requiring various types of
resummations including corrections from very soft HQ momenta, p ' µB , that lead to a non-analytic behavior in the
strong coupling constant. The final result shows that NLO corrections to the LO result are very large, even at relatively
small coupling, e.g., more than a factor of 5 for ↵s=0.2. This implies that the perturbative series is not under control
and cannot be used to assess meaningful corrections to the leading-order result.

Other corrections to the leading-order Born diagrams have been investigated. In Refs. [22, 23] the energy-momentum
dependent polarization tensors have been inserted into the t-channel gluon propagators in hard-thermal-loop approxima-
tion. A sizable increase in the interaction strength has been found, which can decrease the HQ diffusion coefficient by a
factor of ⇠2-3 or more , (see, e.g., Fig. 4 in Ref. [5]) and also affects the momentum dependence of the relaxation rate,
relative to the LO results. In Refs. [24, 25] the running of the QCD coupling constant has been introduced not only as
a function of temperature, but also as a function of the momentum transfer, Q2 of the exchanged gluon, reaching values
of close to 1 in the limit of Q2 ! 0. In addition, it has been argued that a selfconsistent determination of the Debye
mass, µ̃2
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dpi
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= − ηpi + fi ⟨ fi(t′￼)fi(t)⟩ = κδ(t′￼− t) κ = 2MTη =

2T2

Ds
DRAG COEFFICIENT

Heavy quark relaxation time τQ = η−1

Microscopically, the equation of motion of the heavy particle in the medium are:
dpi

dt
= ℱi(t) = q(E + v × B)i

LORENTZ FORCE
Matching both descriptions:

, with ⟨ fi(t′￼)fj(t)⟩ = ⟨Ei(t′￼)Ej(t)⟩ +
1
3

⟨v2⟩⟨δijBk(t′￼)Bk(t) − Bj(t′￼)Bi(t)⟩ ⟨v2⟩ =
3T
M

 and κ∞ ≡ κE κ1/M ≡ κB

TOTAL DIFFUSION COEFFICIENT: 
κ = κ∞ + 2/3⟨v2⟩κ1/M
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Let us give a look to the continuum and zero flow extrapolated results for both correlators:

Smaller curvature  Smaller → κThe diffusion coefficient  is responsible for 
most of the curvature
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WE CAN SPLIT THE SPECTRAL FUNCTION INTO IR AND UV PARTS 
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Can we use these LO and NLO estimates and scales to normalize the correlators again?
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PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT
Can we use these LO and NLO estimates and scales to normalize the correlators again?

CORRELATORS NORMALIZE BY Gnorm

Computed with  but factorizing 
out the running coupling

ρLO
E (ω, τ)

Electric spectral function :
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PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT
Can we use these LO and NLO estimates and scales to normalize the correlators again?

CORRELATORS NORMALIZE BY GLO+

Computed with  and also 
including the running coupling

ρLO
E (ω, τ)

Electric spectral function :
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PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT
Can we use these LO and NLO estimates and scales to normalize the correlators again?

CORRELATORS NORMALIZE BY GNLO+

Computed with  and also 
including the running coupling

ρNLO
E (ω, τ)

Electric spectral function :

THE RATIO IS ALMOST FLAT FOR LARGE , SO T κ → 0
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We can even compare the results with the direct perturbative calculation of the diffusion coefficient. 
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Only the electric coefficient has been computed in PT
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Caron-Huot, Moore (2008)
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The “convergence” of the expansion, however, is problematic unless the temperature is asymptotically high
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Actually, the LO correction is negative at temperatures much larger than the chiral crossover temperature.
 is obtained under the assumption , which in general is only valid for very large temperatures.κLO
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We can even compare the results with the direct perturbative calculation of the diffusion coefficient. 
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There exist a LO of and NLO direct estimations of the diffusion coefficient:

Actually, the LO correction is negative at temperatures much larger than the chiral crossover temperature.
 is obtained under the assumption , which in general is only valid for very large temperatures.κLO

E mD ≪ T

On the other hand, the NLO correction is  and very large numerically, and therefore  is positive.O(g5) κNLO
E

The “convergence” of the expansion, however, is problematic unless the temperature is asymptotically high
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LATTICE DATA

PT PREDICTED CURVE

Using  and  (purely PT) to integrate the spectral function we obtain the correlator at high :κNLO
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PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT

LATTICE DATA

PT PREDICTED CURVE

GREAT AGREEMENT BETWEEN LATTICE DATA AND PT PREDICTIONS

Using  and  (purely PT) to integrate the spectral function we obtain the correlator at high :κNLO
E ρNLO
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Let us recall the general form of the spectral function:

How do we model the transition between the IR and UV regimes?

Direct sum transition : ρsum(ω, T ) = ρIR(ω, T ) + ρUV(ω)
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Sharp transition : ρmax(ω, T ) = max{ρIR(ω, T ), ρUV(ω)}

Smooth transition : ρsmax(ω, T ) = ρIR2(ω, T ) + ρUV2(ω)

Direct sum transition : ρsum(ω, T ) = ρIR(ω, T ) + ρUV(ω)

SPECTRAL RECONSTRUCTION
Let us recall the general form of the spectral function:

How do we model the transition between the IR and UV regimes?

Polynomial transition :

 for ρIR(ω, T ) 10−6 ≤ ω/T ≤ ωIR

    for ρUV(ω) ωUV ≤ ω/T ≤ 103

          for cωp ωIR ≤ ω/T ≤ ωUV

0.5, 1.0, 2.0ωIR/T =

ωUV/T = 2π
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We now present the results of using the previously discussed fitting techniques to extract the diffusion 
coefficients .κE,B/T3
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The max model consistently yields the largest values of , while the power-law fit with  
systematically yields the smallest one

κ ωIR/T = 0.5

We now present the results of using the previously discussed fitting techniques to extract the diffusion 
coefficients .κE,B/T3
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We now present our final results for the momentum diffusion coefficient. 
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We now present our final results for the momentum diffusion coefficient. 
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SPATIAL DIFFUSION COEFFICIENT 
We now present our final results for the spatial diffusion coefficient. 
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Complete 2+1 lattice QCD calculation of the heavy quark diffusion for a wide range of temperatures.

Our results are compatible with the NLO perturbative predictions for the static heavy quark diffusion coefficient. 

WE SUCCESSFULLY REPRODUCE THE CORRELATORS AT HIGH  USING ONLY PTT

DIFFUSION COEFFICIENT  AND  FOR 153 MEV TO 10 GEVκ Ds T =

Near  MeV, the diffusion coefficient approaches the strongly coupled AdS/CFT bound.Tc ≃ 150

THE QGP IS A STRONGLY COUPLED SYSTEM
Our results remain systematically lower than estimates Bayesian reconstructions and data-driven determinations.

LOWER THAN THE DATA DRIVEN ESTIMATION

We used the correct high-energy behavior of the chromo-electric spectral function. 

RESOLVES THE PUZZLE OF THE LARGE RESCALING FACTOR
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NUMERICAL SETUP
LATTICE ANALYSIS

CONFIGURATIONS WITH ml = ml/5



286 8.4000 0.0247 0.008870 0.0017740 64 28 4234 16
308 8.4000 0.0247 0.008870 0.0017740 64 26 4841 16
333 8.4000 0.0247 0.008870 0.0017740 64 24 4728 4
364 8.4000 0.0247 0.008870 0.0017740 64 22 5272 4
400 8.4000 0.0247 0.008870 0.0017740 64 20 5664 4
444 8.4000 0.0247 0.008870 0.0017740 64 18 6188 4
500 8.4000 0.0247 0.008870 0.0017740 64 16 5971 4
352 8.1260 0.0311 0.011380 0.0022760 64 18 4214 12
352 8.3620 0.0255 0.009095 0.0018190 64 22 3609 16
400 8.2763 0.0274 0.009861 0.0019722 64 18 3441 16
400 8.6165 0.0205 0.007174 0.0014348 64 24 4097 24
444 8.2612 0.0278 0.010004 0.0020008 64 16 4462 16
444 8.6376 0.0202 0.007036 0.0014072 64 22 4025 16
500 8.5398 0.0219 0.007703 0.0015406 64 18 3617 16
500 8.6647 0.0197 0.006862 0.0013724 64 20 4266 24
500 8.8815 0.0164 0.005626 0.0011252 64 24 3808 24
1000 9.3653 0.0110 0.003635 0.0007270 64 18 1566 8
1000 9.4910 0.0099 0.003248 0.0006496 64 20 2047 4
1000 9.7085 0.0082 0.002675 0.0005350 64 24 1346 4
10000 12.1034 0.00110 0.0003221 0.00006442 64 18 1373 8
10000 12.2281 0.00099 0.0028855 0.00005771 64 20 1479 4
10000 12.2281 0.00099 0.0028855 0.00005771 64 20 1479 4
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500 8.6647 0.0197 0.006862 0.0013724 64 20 4266 24
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1000 9.4910 0.0099 0.003248 0.0006496 64 20 2047 4
1000 9.7085 0.0082 0.002675 0.0005350 64 24 1346 4
10000 12.1034 0.00110 0.0003221 0.00006442 64 18 1373 8
10000 12.2281 0.00099 0.0028855 0.00005771 64 20 1479 4
10000 12.2281 0.00099 0.0028855 0.00005771 64 20 1479 4
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CONFIGURATIONS WITH ml = ml/20
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137 7.3730 0.0602 0.02500 0.00125 64 24 2273 4
149 7.3730 0.0602 0.02500 0.00125 64 22 4663 35
164 7.3730 0.0602 0.02500 0.00125 64 20 7424 36
182 7.3730 0.0602 0.02500 0.00125 64 18 6245 37
205 7.3730 0.0602 0.02500 0.00125 64 16 4785 4
133 7.5960 0.0493 0.02020 0.00101 64 30 1683 4
143 7.5960 0.0493 0.02020 0.00101 64 28 2036 4
154 7.5960 0.0493 0.02020 0.00101 64 26 9162 47
167 7.5960 0.0493 0.02020 0.00101 64 24 6669 37
182 7.5960 0.0493 0.02020 0.00101 64 22 7115 37
200 7.5960 0.0493 0.02020 0.00101 64 20 3017 4
222 7.5960 0.0493 0.02020 0.00101 64 18 4952 8
250 7.5960 0.0493 0.02020 0.00101 64 16 7130 9
153 7.8250 0.0404 0.01640 0.00082 64 32 2574 8
163 7.8250 0.0404 0.01640 0.00082 64 30 4757 24
174 7.8250 0.0404 0.01640 0.00082 64 28 14128 49
188 7.8250 0.0404 0.01640 0.00082 64 26 13911 48
204 7.8250 0.0404 0.01640 0.00082 64 24 4555 7
222 7.8250 0.0404 0.01640 0.00082 64 22 5109 7
244 7.8250 0.0404 0.01640 0.00082 64 20 4433 4
271 7.8250 0.0404 0.01640 0.00082 64 18 5340 4
305 7.8250 0.0404 0.01640 0.00082 64 16 6238 4

 [Mev]T β  [fm]a a × ms a × ml Nσ Nτ configs stream
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195 7.5700 0.0505 0.019730 0.0039460 64 20 5911 12
195 7.7770 0.0421 0.016010 0.0032020 64 24 5480 4
220 7.7040 0.0449 0.017230 0.0034460 64 20 7933 12
220 7.9130 0.0374 0.014000 0.0028000 64 24 5754 4
251 7.8570 0.0393 0.014790 0.0029580 64 20 9443 4
251 8.0680 0.0327 0.012040 0.0024080 64 24 5336 12
293 8.0360 0.0336 0.012410 0.0024820 64 20 9287 4
293 8.1470 0.0306 0.011150 0.0022300 64 22 9105 12
352 8.2490 0.0280 0.010110 0.0020220 96 20 6167 4

NUMERICAL SETUP
LATTICE ANALYSIS

 [Mev]T β  [fm]a a × ms a × ml Nσ Nτ configs stream

PERVIOUSLY GENERATED BY HOTQCD COLLABORATION
HotQCD
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NUMERICAL SETUP
Our data is, in general, not obtained at a fixed temperature, so we need to interpolate the correlators also in .T
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NUMERICAL SETUP
Our data is, in general, not obtained at a fixed temperature, so we need to interpolate the correlators also in .T
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PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT
Can we use these LO and NLO estimates and scales to normalize the correlators again?
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PERTURBATIVE QCD ESTIMATES

PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT
Can we use these LO and NLO estimates and scales to normalize the correlators again?

CORRELATORS NORMALIZE BY Gnorm

Computed with  but factorizing 
out the running coupling

ρLO
E (ω, τ)

Electric spectral function :
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PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT
Can we use these LO and NLO estimates and scales to normalize the correlators again?

CORRELATORS NORMALIZE BY GLO+

Computed with  and also 
including the running coupling

ρLO
E (ω, τ)

Electric spectral function :
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PERTURBATIVE QCD ESTIMATES

PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT
Can we use these LO and NLO estimates and scales to normalize the correlators again?

CORRELATORS NORMALIZE BY GNLO+

Computed with  and also 
including the running coupling

ρNLO
E (ω, τ)

Electric spectral function :

THE RATIO IS ALMOST FLAT FOR LARGE , SO T κ → 0



QUENCHED QCD

314 MeVTc ≃

PERTURBATIVE QCD ESTIMATES

PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT
We can even compare the results with the direct perturbative calculation of the diffusion coefficient. 
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154 MeVTc ≃

2+1 FLAVOR QCD

PERTURBATIVE QCD ESTIMATES

PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT
We can even compare the results with the direct perturbative calculation of the diffusion coefficient. 
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PERTURBATIVE QCD ESTIMATES

PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT
We can even compare the results with the direct perturbative calculation of the diffusion coefficient. 

κLO ≡
g4CF

12π3 ∫
∞

0
dq q2 ∫

2q

0
dp

p3

(p2 + Π00(p, T )2
× Nf nF(q)[1 − nF(q)] (2 −

p2

2q2 ) Nc nB(q)[nB(q)] (2 −
p2

q2
+

p4

4q4 )



CAN BE RESUMMED TO IMPROVE THE CONVERGENCE

PERTURBATIVE QCD ESTIMATES

PERTURBATIVE RESULTS FOR THE DIFFUSION COEFFICIENT
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To assess the sensitivity of our results to the modeling assumptions for  MeVT < 190


