Heavy Quark Diffusion Coefficient from Lattice QCD

Jorge Luis Dasilva Golán

HotQCD collaboration

Brookhaven

National Laboratory

PRELIMINARIES

Motivation

Heavy Quark Diffusion

LATTICE ANALYSIS

Numerical setup

Double extrapolated correlators

PERTURBATIVE QCD ESTIMATES

Perturbative results for the diffusion coefficient Spectral reconstruction

HEAVY QUARK DIFFUSIONS RESULTS

Thermal squared velocity and momentum

Momentum Diffusion Coefficient

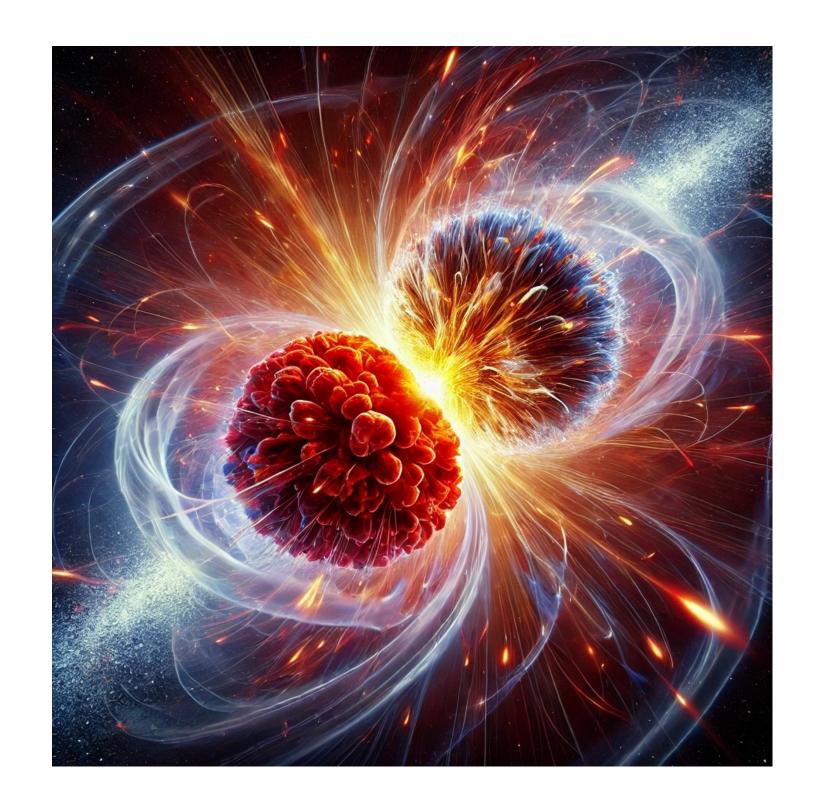
Spatial Diffusion Coefficient

CONCLUSIONS

- HotQCD, D. Bollweg et al. Temperature Dependence of Heavy Quark Diffusion from (2+1)-flavor Lattice QCD, JHEP 09 (2025) 180, [2506.11958].
- TUMQCD, N. Brambilla et al. Heavy quark diffusion coefficient with gradient flow, Phys. Rev. D 107 (2023) 054508, [2206.02861].
- HotQCD, L. Altenkort et al. Heavy Quark Diffusion from 2+1 Flavor Lattice QCD with 320 MeV Pion Mass, Phys. Rev. Lett. 130 (2023) 231902, [2302. 08501].
- HotQCD, L. Altenkort et al. Quark Mass Dependence of Heavy Quark Diffusion Coefficient from Lattice QCD, Phys. Rev. Lett. 132 no. 5, (2024) 051902, [2311.01525].

PRELIMINARIES

The quark gluon plasma (QGP) is a state of matter that exists under extreme conditions such as those found in the early universe.



The quark gluon plasma (QGP) is a state of matter that exists under extreme conditions such as those found in the early universe.

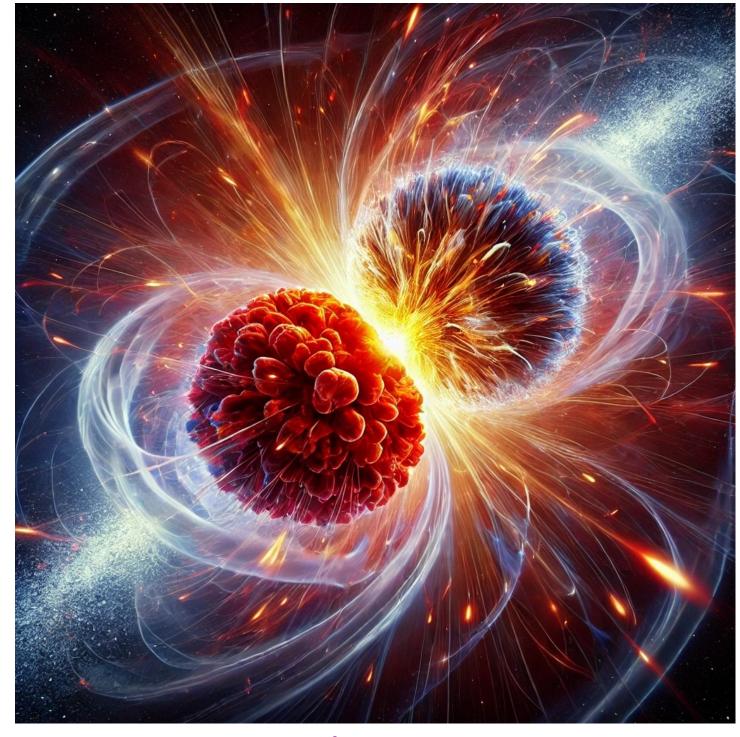
Hot and dense assembly made of quarks and gluons

ChatGPT



The quark gluon plasma (QGP) is a state of matter that exists under extreme conditions such as those found in the early universe.

HEAVY-ION COLLISIONS (HICS)



ChatGPT

PRELIMINARIES

MOTIVATION

The quark gluon plasma (QGP) is a state of matter that exists under extreme conditions such as those found in the early universe.

Hot and dense assembly made of quarks and gluons

However, the study of the properties of QGP matter produced in HICs is complicated, as most of the constituents undergo multiple scattering and are confined back into hadrons in a very short time.

Collins, Perry (1978)

The quark gluon plasma (QGP) is a state of matter that exists under extreme conditions such as those found in the early universe.

Hot and dense assembly made of quarks and gluons

However, the study of the properties of QGP matter produced in HICs is complicated, as most of the constituents undergo multiple scattering and are confined back into hadrons in a very short time.

We can study QGP at HICs using heavy flavor probes

HEAVY QUARKS: CHARM AND BOTTOM

BOUND STATES: QUARKONIA

PRELIMINARIES

MOTIVATION

The heavy quark diffusion coefficient is a key quantity in heavy ion collisions.

PRELIMINARIES

MOTIVATION

The heavy quark diffusion coefficient is a key quantity in heavy ion collisions.

Transport coefficients

The in-medium interactions of heavy quarks manifest themselves in a handful of transport properties.

HEAVY QUARK DIFFUSION COEFFICIENT $D_{\scriptscriptstyle S}$

The heavy quark diffusion coefficient is a key quantity in heavy ion collisions.

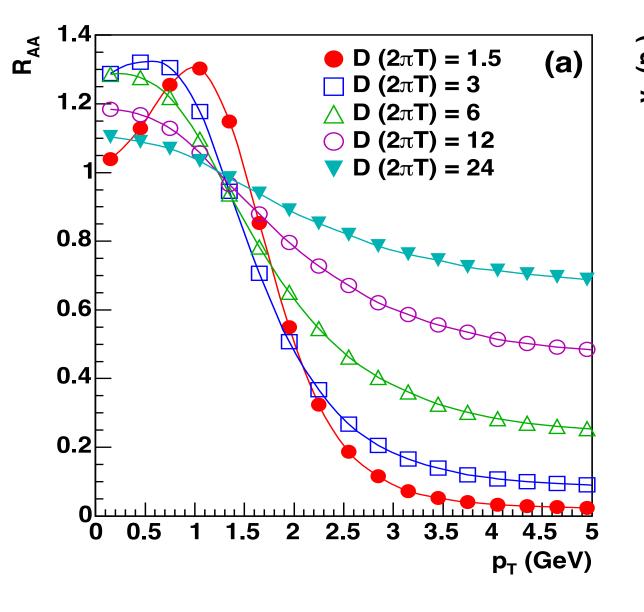
Transport coefficients

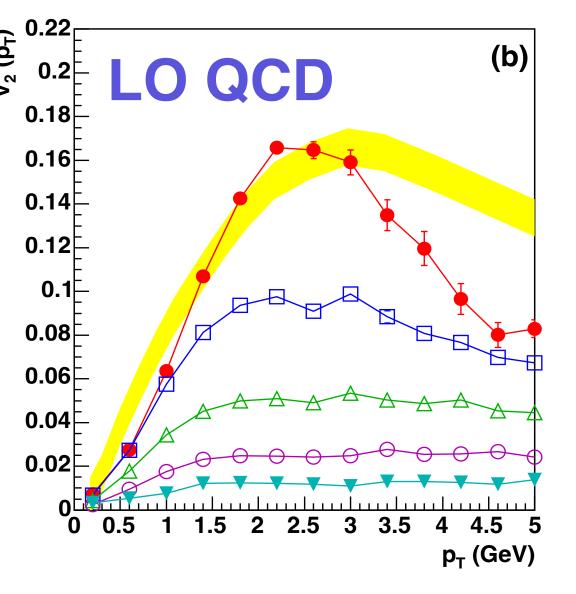
The in-medium interactions of heavy quarks manifest themselves in a handful of transport properties.

HEAVY QUARK DIFFUSION COEFFICIENT $D_{\scriptscriptstyle S}$

Quantities of experimental interest

The suppression factor R_{AA} and elliptic flow \mathbf{v}_2 are highly dependent on the choice of D_s .





The heavy quark diffusion coefficient is a key quantity in heavy ion collisions.

Transport coefficients

The in-medium interactions of heavy quarks manifest themselves in a handful of transport properties.

HEAVY QUARK DIFFUSION COEFFICIENT $D_{\scriptscriptstyle S}$

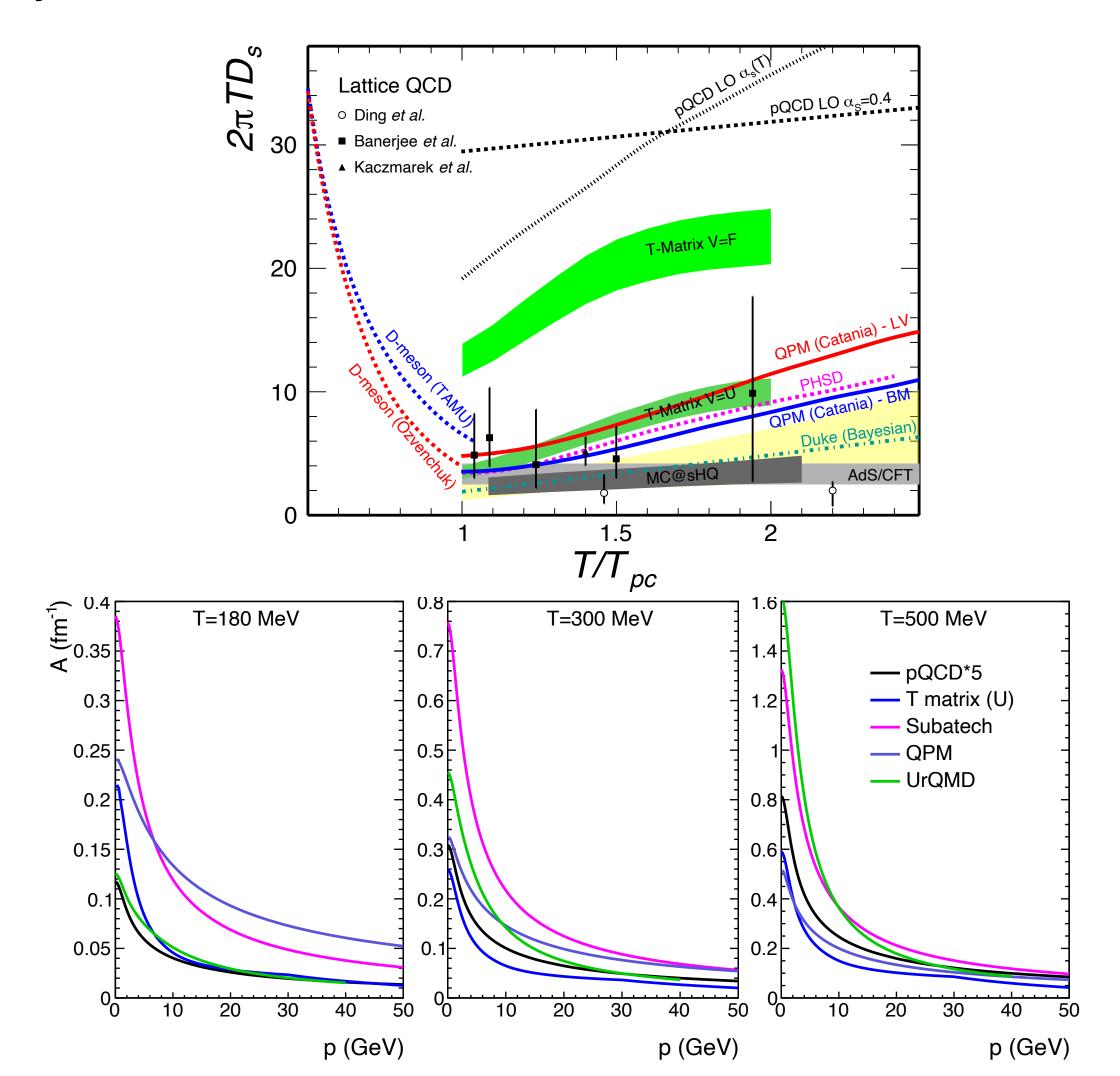
Quantities of experimental interest

The suppression factor R_{AA} and elliptic flow \mathbf{v}_2 are highly dependent on the choice of D_{s} .

Model predictions

Multiple models predict very different values for these transport coefficients.

NEED FOR NON-PERTURBATIVE DETERMINATIONS

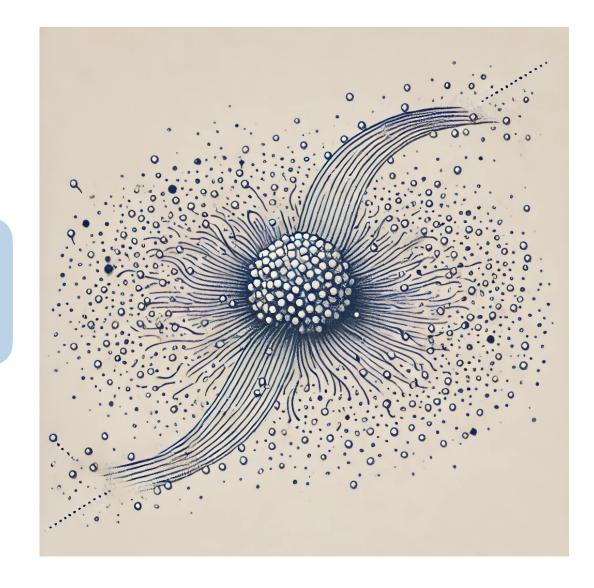


The heavy quark diffusion coefficient κ quantifies the momentum transfer from QGP to the heavy quark via random, uncorrelated in time, momentum kicks.

The heavy quark diffusion coefficient κ quantifies the momentum transfer from QGP to the heavy quark via random, uncorrelated in time, momentum kicks.

It characterizes the **Brownian motion** of a heavy quark in a thermal medium.

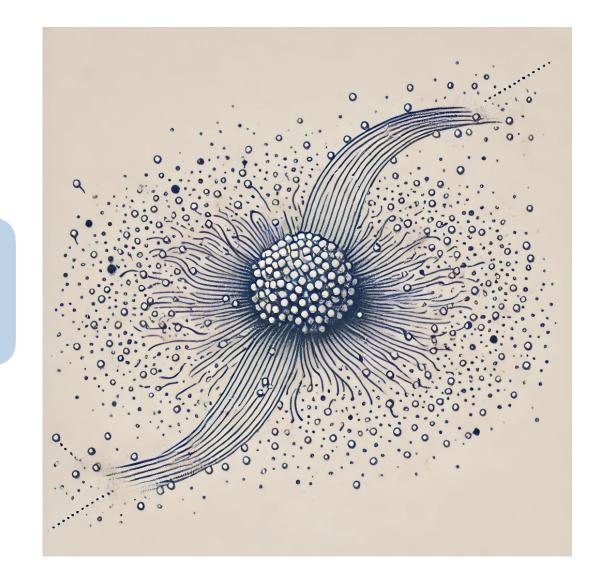
CHATGPT, DRAW ME QGP
BROWNIAN MOTION

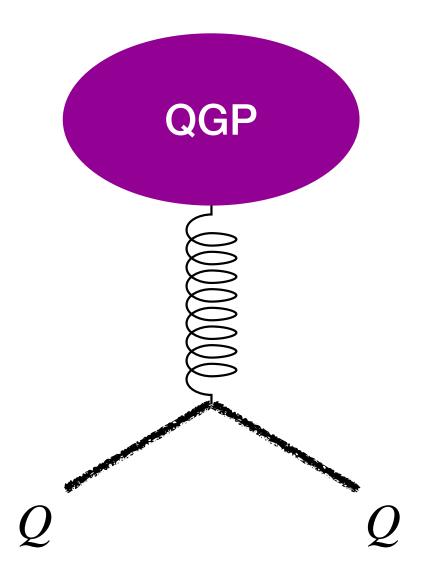


The heavy quark diffusion coefficient κ quantifies the momentum transfer from QGP to the heavy quark via random, uncorrelated in time, momentum kicks.

It characterizes the **Brownian motion** of a heavy quark in a thermal medium.

CHATGPT, DRAW ME QGP
BROWNIAN MOTION

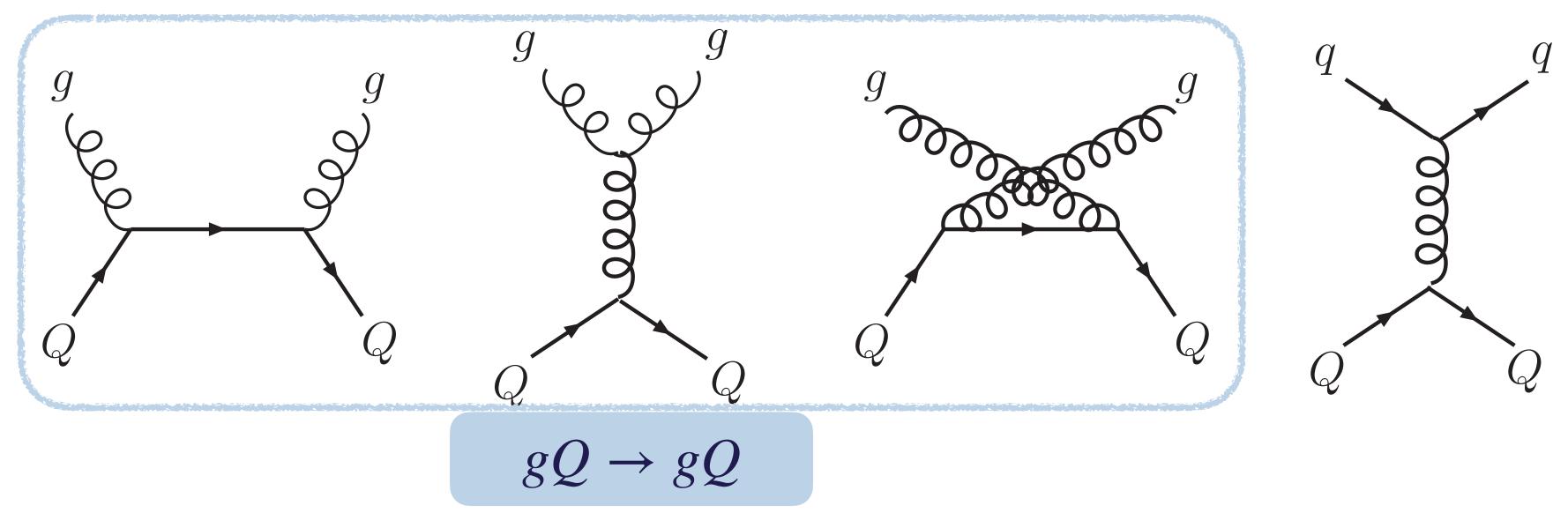




HEAVY QUARK INTERACTIONS

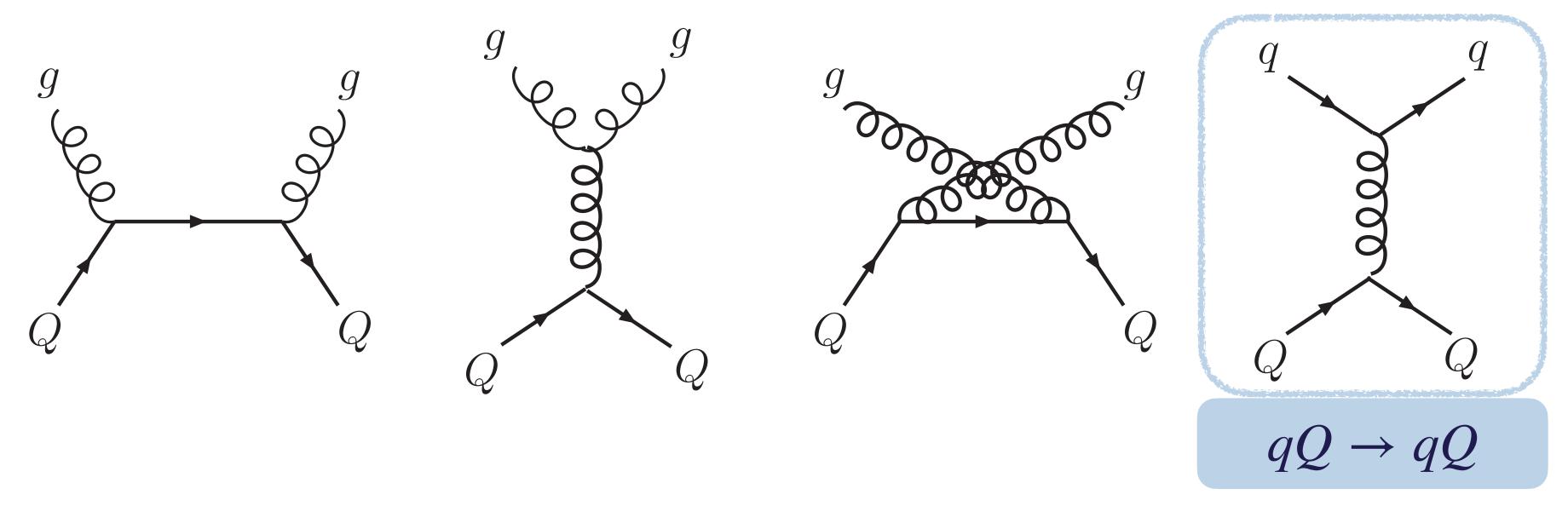
The heavy quark diffusion coefficient κ quantifies the momentum transfer from QGP to the heavy quark via random, uncorrelated in time, momentum kicks.

It characterizes the **Brownian motion** of a heavy quark in a thermal medium.



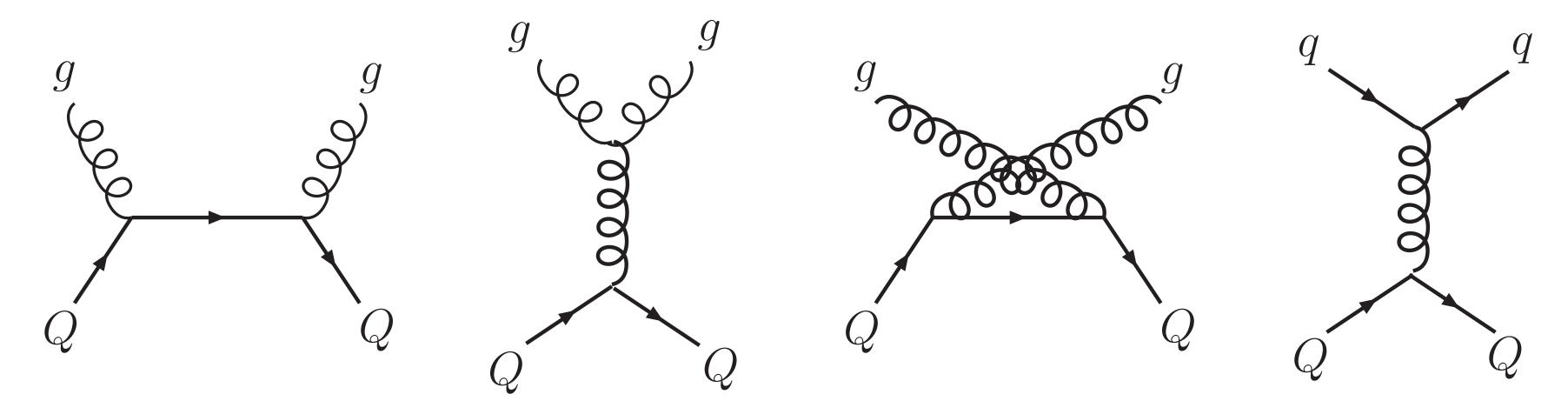
The heavy quark diffusion coefficient κ quantifies the momentum transfer from QGP to the heavy quark via random, uncorrelated in time, momentum kicks.

It characterizes the **Brownian motion** of a heavy quark in a thermal medium.



The heavy quark diffusion coefficient κ quantifies the momentum transfer from QGP to the heavy quark via random, uncorrelated in time, momentum kicks.

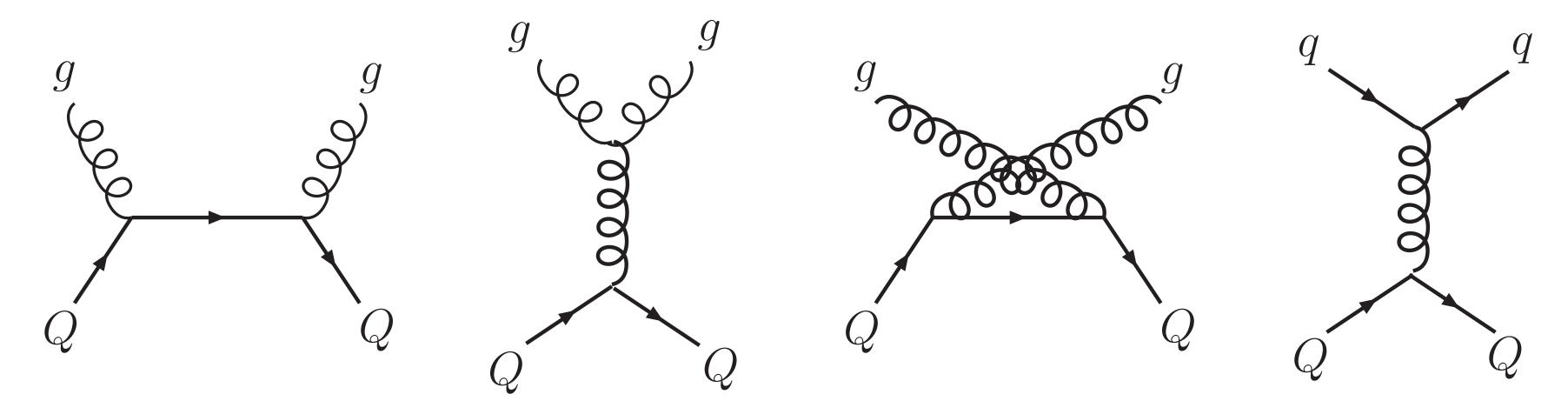
It characterizes the **Brownian motion** of a heavy quark in a thermal medium.



Diffusion is a long-time, long-distance process, so its inherently an infrared (IR) sensitive process.

The heavy quark diffusion coefficient κ quantifies the momentum transfer from QGP to the heavy quark via random, uncorrelated in time, momentum kicks.

It characterizes the **Brownian motion** of a heavy quark in a thermal medium.

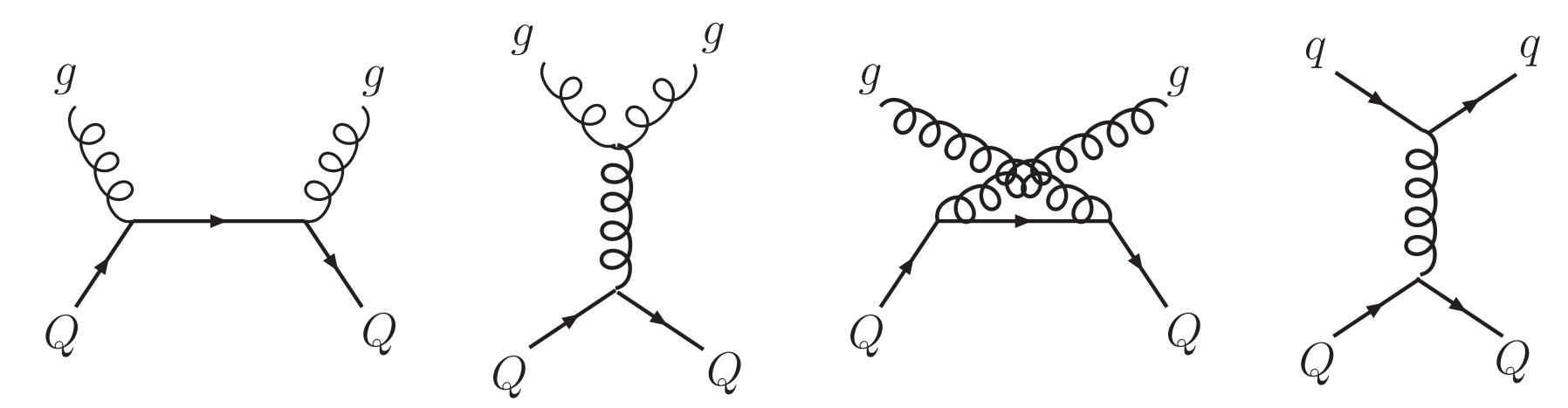


Diffusion is a long-time, long-distance process, so its inherently an infrared (IR) sensitive process.

Although the collisions between the heavy quark and the medium are frequent, fast, and short-ranged, the diffusion coefficient measures a long-term relaxation.

The heavy quark diffusion coefficient κ quantifies the momentum transfer from QGP to the heavy quark via random, uncorrelated in time, momentum kicks.

It characterizes the **Brownian motion** of a heavy quark in a thermal medium.



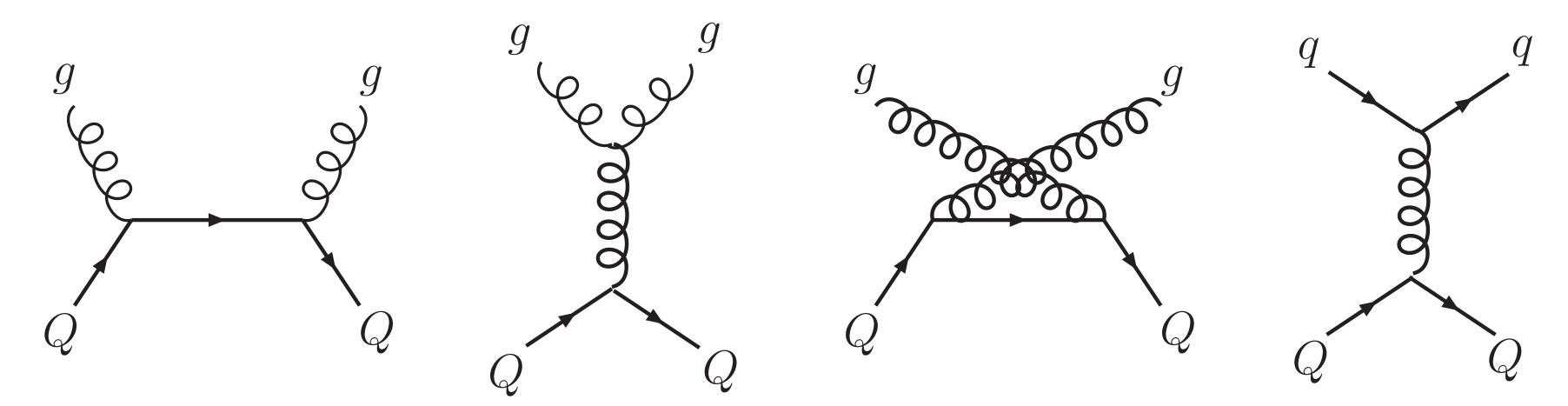
Diffusion is a long-time, long-distance process, so its inherently an infrared (IR) sensitive process.

Although the collisions between the heavy quark and the medium are frequent, fast, and short-ranged, the diffusion coefficient measures a long-term relaxation.

For sufficiently large temperature

The heavy quark diffusion coefficient κ quantifies the momentum transfer from QGP to the heavy quark via random, uncorrelated in time, momentum kicks.

It characterizes the **Brownian motion** of a heavy quark in a thermal medium.



Diffusion is a long-time, long-distance process, so its inherently an infrared (IR) sensitive process.

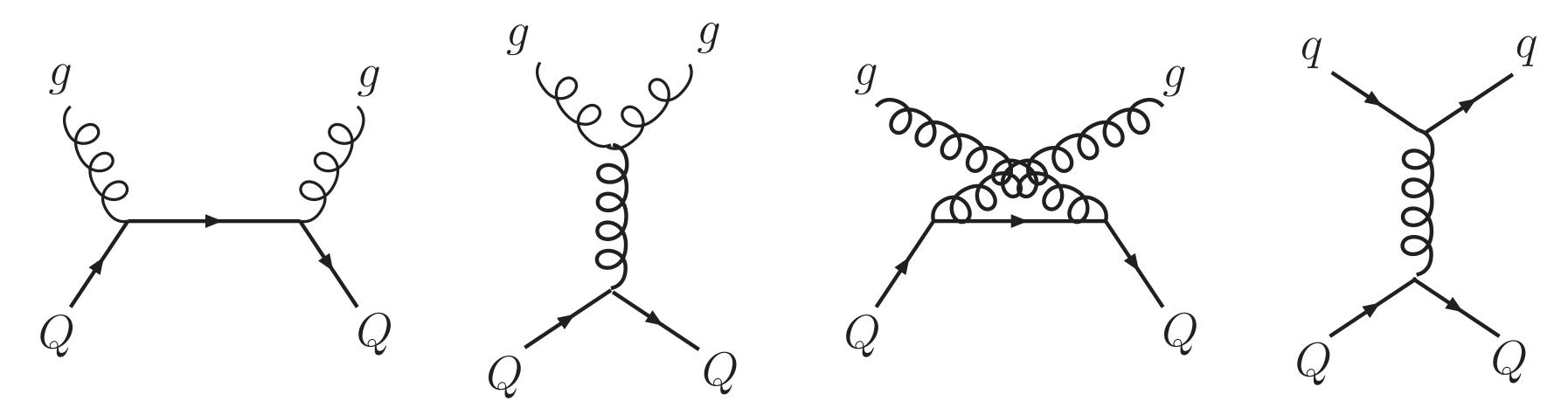
Although the collisions between the heavy quark and the medium are frequent, fast, and short-ranged, the diffusion coefficient measures a long-term relaxation.

For sufficiently large temperature

Weakly coupled medium

The heavy quark diffusion coefficient κ quantifies the momentum transfer from QGP to the heavy quark via random, uncorrelated in time, momentum kicks.

It characterizes the **Brownian motion** of a heavy quark in a thermal medium.



Diffusion is a long-time, long-distance process, so its inherently an infrared (IR) sensitive process.

Although the collisions between the heavy quark and the medium are frequent, fast, and short-ranged, the diffusion coefficient measures a long-term relaxation.

For sufficiently large temperature

Weakly coupled medium

The coefficient should go to zero

The motion is described by the Langevin equation:

$$\frac{dp_i}{dt} = -\eta p_i + f_{i'} \text{ with } \langle f_i(t')f_i(t)\rangle = \kappa \delta(t'-t) \text{ and } \kappa = 2MT\eta = \frac{2T^2}{D_s}$$

The motion is described by the Langevin equation:

$$\frac{dp_i}{dt} = -\eta p_i + f_{i'} \text{ with } \langle f_i(t')f_i(t)\rangle = \kappa \delta(t'-t) \text{ and } \kappa = 2MT\eta = \frac{2T^2}{D_s}$$

DRAG COEFFICIENT

Heavy quark relaxation time $\tau_Q = \eta^{-1}$

The motion is described by the Langevin equation:

$$\frac{dp_i}{dt} = -\eta p_i + f_{i'} \text{ with } \langle f_i(t')f_i(t)\rangle = \kappa \delta(t'-t) \text{ and } \kappa = 2MT\eta = \frac{2T^2}{D_s}$$

DRAG COEFFICIENT

Heavy quark relaxation time $\tau_Q = \eta^{-1}$

Microscopically, the equation of motion of the heavy particle in the medium are:

$$\frac{dp_i}{dt} = \mathcal{F}_i(t) = q(E + v \times B)_i$$

LORENTZ FORCE

The motion is described by the Langevin equation:

$$\frac{dp_i}{dt} = -\eta p_i + f_{i'} \text{ with } \langle f_i(t')f_i(t)\rangle = \kappa \delta(t'-t) \text{ and } \kappa = 2MT\eta = \frac{2T^2}{D_s}$$

DRAG COEFFICIENT

Heavy quark relaxation time $\tau_O = \eta^{-1}$

Microscopically, the equation of motion of the heavy particle in the medium are:

$$\frac{dp_i}{dt} = \mathcal{F}_i(t) = q(E + \vee \times B)_i$$

LORENTZ FORCE

Matching both descriptions:

$$\langle f_i(t')f_j(t)\rangle = \langle E_i(t')E_j(t)\rangle + \frac{1}{3}\langle \mathbf{v}^2\rangle\langle \delta_{ij}B_k(t')B_k(t) - B_j(t')B_i(t)\rangle, \text{ with } \langle \mathbf{v}^2\rangle = \frac{3T}{M}$$

TOTAL DIFFUSION COEFFICIENT:

$$\kappa = \kappa_{\infty} + 2/3 \langle \mathbf{v}^2 \rangle \kappa_{1/M}$$

$$\kappa_{\infty} \equiv \kappa_E \text{ and } \kappa_{1/M} \equiv \kappa_B$$

A direct determination of the coefficient on the lattice is difficult, so we use heavy quark effective theory (HQEFT).

Casadelrrey-Solana, Teaney, Caron-Huot, Laine, Moore

A direct determination of the coefficient on the lattice is difficult, so we use heavy quark effective theory (HQEFT).

Suppose $M\gg T$ and $M\gg \Lambda_{\rm QCD}$

A direct determination of the coefficient on the lattice is difficult, so we use heavy quark effective theory (HQEFT).

Suppose $M\gg T$ and $M\gg \Lambda_{\rm QCD}$

EXPAND IN POWERS OF 1/M

A direct determination of the coefficient on the lattice is difficult, so we use heavy quark effective theory (HQEFT).

Suppose $M\gg T$ and $M\gg \Lambda_{\rm QCD}$

EXPAND IN POWERS OF 1/M

Integrate out everything else

A direct determination of the coefficient on the lattice is difficult, so we use heavy quark effective theory (HQEFT).

Suppose $M\gg T$ and $M\gg \Lambda_{\rm QCD}$

EXPAND IN POWERS OF 1/M

Integrate out everything else

The heavy quark is so "heavy" that the quark number is conserved

A direct determination of the coefficient on the lattice is difficult, so we use heavy quark effective theory (HQEFT).

Suppose $M\gg T$ and $M\gg \Lambda_{\rm QCD}$

EXPAND IN POWERS OF 1/M

Integrate out everything else

The heavy quark is so "heavy" that the quark number is conserved

From this macroscopic Langevin dynamics, the momentum diffusion coefficient is:

$$\kappa \equiv \frac{2T^2}{D} \frac{\langle p^2 \rangle}{3MT}$$

Moore, Teaney (2005)

A direct determination of the coefficient on the lattice is difficult, so we use heavy quark effective theory (HQEFT).

Suppose $M\gg T$ and $M\gg \Lambda_{\rm QCD}$

EXPAND IN POWERS OF 1/M

Integrate out everything else

The heavy quark is so "heavy" that the quark number is conserved

From this macroscopic Langevin dynamics, the momentum diffusion coefficient is:

$$\kappa \equiv \frac{2T^2}{D} \frac{\langle p^2 \rangle}{3MT}$$

Moore, Teaney (2005)

MEAN SQUARED MOMENTUM

A direct determination of the coefficient on the lattice is difficult, so we use heavy quark effective theory (HQEFT).

Suppose $M\gg T$ and $M\gg \Lambda_{\rm QCD}$

EXPAND IN POWERS OF 1/M

Integrate out everything else

The heavy quark is so "heavy" that the quark number is conserved

From this macroscopic Langevin dynamics, the momentum diffusion coefficient is:

$$\kappa \equiv \frac{2T^2}{D} \frac{\langle p^2 \rangle}{3MT}$$

MEAN SQUARED MOMENTUM

It can be extracted from the vector current-current correlation function (or its derivatives):

$$G_{E,B}(\tau,T) \equiv \int_0^\infty \frac{d\omega}{\pi} \rho_{E,B}(\omega,T) K(\omega,\tau,T) \text{ with } K(\omega,\tau,T) = \frac{\cosh[\omega(\tau-1/2T)]}{\sinh(\omega/2T)}$$

A direct determination of the coefficient on the lattice is difficult, so we use heavy quark effective theory (HQEFT).

Suppose $M\gg T$ and $M\gg \Lambda_{\rm QCD}$

EXPAND IN POWERS OF 1/M

Integrate out everything else

The heavy quark is so "heavy" that the quark number is conserved

From this macroscopic Langevin dynamics, the momentum diffusion coefficient is:

$$\kappa \equiv \frac{2T^2}{D} \frac{\langle p^2 \rangle}{3MT}$$

MEAN SQUARED MOMENTUM

It can be extracted from the vector current-current correlation function (or its derivatives):

$$G_{E,B}(\tau,T) \equiv \int_0^\infty \frac{d\omega}{\pi} \rho_{E,B}(\omega,T) K(\omega,\tau,T) \text{ with } K(\omega,\tau,T) = \frac{\cosh[\omega(\tau-1/2T)]}{\sinh(\omega/2T)}$$

SPECTRAL FUNCTION

PRELIMINARIES

HEAVY QUARK DIFFUSION

Each correction has its own correlation function:

Each correction has its own correlation function:

$$G_E(\tau) = -\frac{1}{3} \sum_{i=0}^{3} \frac{\left\langle \text{ReTr}[U(1/T, \tau)E_i(\tau, \vec{0})U(\tau, 0)E_i(0, \vec{0})] \right\rangle}{\text{ReTr}U(1/T, 0)}$$

INFINITE HEAVY MASS CORRELATOR

$$\frac{\left\langle \text{ReTr}[U(1/T,\tau)E_i(\tau,\vec{0})U(\tau,0)E_i(0,\vec{0})] \right\rangle}{\text{ReTr}U(1/T,0)} \qquad G_B(\tau) = \frac{1}{3} \sum_{i=0}^3 \frac{\left\langle \text{ReTr}[U(1/T,\tau)B_i(\tau,\vec{0})U(\tau,0)B_i(0,\vec{0})] \right\rangle}{\text{ReTr}U(1/T,0)}$$

FIRST 1/M CORRECTION

Each correction has its own correlation function:

$$G_{E}(\tau) = -\frac{1}{3} \sum_{i=0}^{3} \frac{\left\langle \text{ReTr}[U(1/T, \tau)E_{i}(\tau, \vec{0})U(\tau, 0)E_{i}(0, \vec{0})] \right\rangle}{\text{ReTr}U(1/T, 0)} \qquad G_{B}(\tau) = \frac{1}{3} \sum_{i=0}^{3} \frac{\left\langle \text{ReTr}[U(1/T, \tau)B_{i}(\tau, \vec{0})U(\tau, 0)B_{i}(0, \vec{0})] \right\rangle}{\text{ReTr}U(1/T, 0)}$$

INFINITE HEAVY MASS CORRELATOR

FIRST 1/M CORRECTION

where $U(\tau_1, \tau_2)$ is the Wilson line in Euclidean time and E/B is the Chromo electric/magnetic field operator.

Each correction has its own correlation function:

$$G_{E}(\tau) = -\frac{1}{3} \sum_{i=0}^{3} \frac{\left\langle \text{ReTr}[U(1/T, \tau)E_{i}(\tau, \vec{0})U(\tau, 0)E_{i}(0, \vec{0})] \right\rangle}{\text{ReTr}U(1/T, 0)} \qquad G_{B}(\tau) = \frac{1}{3} \sum_{i=0}^{3} \frac{\left\langle \text{ReTr}[U(1/T, \tau)B_{i}(\tau, \vec{0})U(\tau, 0)B_{i}(0, \vec{0})] \right\rangle}{\text{ReTr}U(1/T, 0)}$$

$$G_{B}(\tau) = \frac{1}{3} \sum_{i=0}^{3} \frac{\left\langle \text{ReTr}[U(1/T, \tau)B_{i}(\tau, \vec{0})U(\tau, 0)B_{i}(0, \vec{0})] \right\rangle}{\text{ReTr}U(1/T, 0)}$$

INFINITE HEAVY MASS CORRELATOR

FIRST 1/M CORRECTION

where $U(\tau_1, \tau_2)$ is the Wilson line in Euclidean time and E/B is the Chromo electric/magnetic field operator.

$$\kappa_E = \lim_{\omega \to 0} \frac{2T}{\omega} \rho_E(\omega)$$

$$\kappa_B = \lim_{\omega \to 0} \frac{2T}{\omega} \rho_B(\omega)$$

Each correction has its own correlation function:

$$G_{E}(\tau) = -\frac{1}{3} \sum_{i=0}^{3} \frac{\left\langle \text{ReTr}[U(1/T, \tau)E_{i}(\tau, \vec{0})U(\tau, 0)E_{i}(0, \vec{0})] \right\rangle}{\text{ReTr}U(1/T, 0)} \qquad G_{B}(\tau) = \frac{1}{3} \sum_{i=0}^{3} \frac{\left\langle \text{ReTr}[U(1/T, \tau)B_{i}(\tau, \vec{0})U(\tau, 0)B_{i}(0, \vec{0})] \right\rangle}{\text{ReTr}U(1/T, 0)}$$

$$G_B(\tau) = \frac{1}{3} \sum_{i=0}^{3} \frac{\left\langle \text{ReTr}[U(1/T, \tau)B_i(\tau, \vec{0})U(\tau, 0)B_i(0, \vec{0})] \right\rangle}{\text{ReTr}U(1/T, 0)}$$

INFINITE HEAVY MASS CORRELATOR

FIRST 1/M CORRECTION

where $U(\tau_1, \tau_2)$ is the Wilson line in Euclidean time and E/B is the Chromo electric/magnetic field operator.

$$\kappa_E = \lim_{\omega \to 0} \frac{2T}{\omega} \rho_E(\omega)$$

$$\kappa_B = \lim_{\omega \to 0} \frac{2T}{\omega} \rho_B(\omega)$$

PHYSICALLY MOTIVATED ANSATZ FOR THE SPECTRAL FUNCTION

LATTICE ANALYSIS

We have generated lattice data ensembles in 2+1 flavor QCD with physical strange quark masses m_s over a temperature range from T=133 to 10000 MeV on a volume of $N_\sigma^3 \times N_\tau$ with $N_\sigma=64$.

We have generated lattice data ensembles in 2+1 flavor QCD with physical strange quark masses m_s over a temperature range from T=133 to 10000 MeV on a volume of $N_{\sigma}^3 \times N_{\tau}$ with $N_{\sigma}=64$.

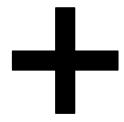
The action S = HIGHLY IMPROVED STAGGERED QUARKS (HISQ)

HPQCD, UKQCD (2007)

We have generated lattice data ensembles in 2+1 flavor QCD with physical strange quark masses m_s over a temperature range from T=133 to 10000 MeV on a volume of $N_{\sigma}^3 \times N_{\tau}$ with $N_{\sigma}=64$.

The action S =

HIGHLY IMPROVED STAGGERED QUARKS (HISQ)



TREE-LEVEL IMPROVED LÜSCHER-WEISZ

HPQCD, UKQCD (2007)

M. Lüscher, P. Weisz (1985)

We have generated lattice data ensembles in 2+1 flavor QCD with physical strange quark masses m_s over a temperature range from T=133 to 10000 MeV on a volume of $N_\sigma^3 \times N_\tau$ with $N_\sigma=64$.

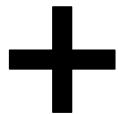
The action S = HIGHLY IMPROVED STAGGERED QUARKS (HISQ)

TREE-LEVEL IMPROVED LÜSCHER-WEISZ

The gauge configurations were generated using the usual Rational Hybrid Monte Carlo (RHMC) algorithm, where each configuration is saved after 10 Monte Carlo (MC) trajectories with an acceptance rate tuned to about 80 %.

We have generated lattice data ensembles in 2+1 flavor QCD with physical strange quark masses m_s over a temperature range from T=133 to 10000 MeV on a volume of $N_\sigma^3 \times N_\tau$ with $N_\sigma=64$.

The action S = HIGHLY IMPROVED STAGGERED QUARKS (HISQ)



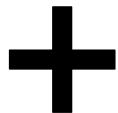
TREE-LEVEL IMPROVED LÜSCHER-WEISZ

The gauge configurations were generated using the usual Rational Hybrid Monte Carlo (RHMC) algorithm, where each configuration is saved after 10 Monte Carlo (MC) trajectories with an acceptance rate tuned to about 80 %.

At sufficiently high temperatures, the effect of the light quark masses is expected to be negligible. At lower temperatures, and especially near the pseudo-critical temperature T_c , these masses can have significant effects.

We have generated lattice data ensembles in 2+1 flavor QCD with physical strange quark masses m_s over a temperature range from T=133 to 10000 MeV on a volume of $N_\sigma^3 \times N_\tau$ with $N_\sigma=64$.

The action S = HIGHLY IMPROVED STAGGERED QUARKS (HISQ)



TREE-LEVEL IMPROVED LÜSCHER-WEISZ

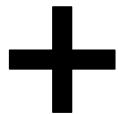
The gauge configurations were generated using the usual Rational Hybrid Monte Carlo (RHMC) algorithm, where each configuration is saved after 10 Monte Carlo (MC) trajectories with an acceptance rate tuned to about 80 %.

At sufficiently high temperatures, the effect of the light quark masses is expected to be negligible. At lower temperatures, and especially near the pseudo-critical temperature T_{c} , these masses can have significant effects.

• For high temperatures we set $m_l = m_s/5$ (with $T_c \simeq 180$ MeV and $m_\pi \simeq 320$ MeV).

We have generated lattice data ensembles in 2+1 flavor QCD with physical strange quark masses m_s over a temperature range from T=133 to 10000 MeV on a volume of $N_{\sigma}^3 \times N_{\tau}$ with $N_{\sigma}=64$.

The action S = HIGHLY IMPROVED STAGGERED QUARKS (HISQ)



TREE-LEVEL IMPROVED LÜSCHER-WEISZ

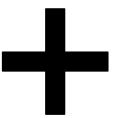
The gauge configurations were generated using the usual Rational Hybrid Monte Carlo (RHMC) algorithm, where each configuration is saved after 10 Monte Carlo (MC) trajectories with an acceptance rate tuned to about 80 %.

At sufficiently high temperatures, the effect of the light quark masses is expected to be negligible. At lower temperatures, and especially near the pseudo-critical temperature T_c , these masses can have significant effects.

- For high temperatures we set $m_l = m_s/5$ (with $T_c \simeq 180$ MeV and $m_\pi \simeq 320$ MeV).
- For **low temperatures** we set $m_l = m_s/20$ (with $T_c \simeq 160$ MeV and $m_\pi \simeq 160$ MeV).

We have generated lattice data ensembles in 2+1 flavor QCD with physical strange quark masses m_s over a temperature range from T=133 to 10000 MeV on a volume of $N_\sigma^3 \times N_\tau$ with $N_\sigma=64$.

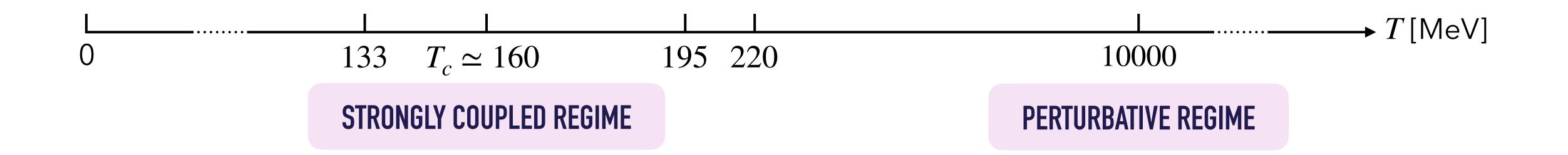
The action S = HIGHLY IMPROVED STAGGERED QUARKS (HISQ)



TREE-LEVEL IMPROVED LÜSCHER-WEISZ

The gauge configurations were generated using the usual Rational Hybrid Monte Carlo (RHMC) algorithm, where each configuration is saved after 10 Monte Carlo (MC) trajectories with an acceptance rate tuned to about 80 %.

At sufficiently high temperatures, the effect of the light quark masses is expected to be negligible. At lower temperatures, and especially near the pseudo-critical temperature T_{c} , these masses can have significant effects.



We have generated lattice data ensembles in 2+1 flavor QCD with physical strange quark masses m_s over a temperature range from T=133 to 10000 MeV on a volume of $N_\sigma^3 \times N_\tau$ with $N_\sigma=64$.

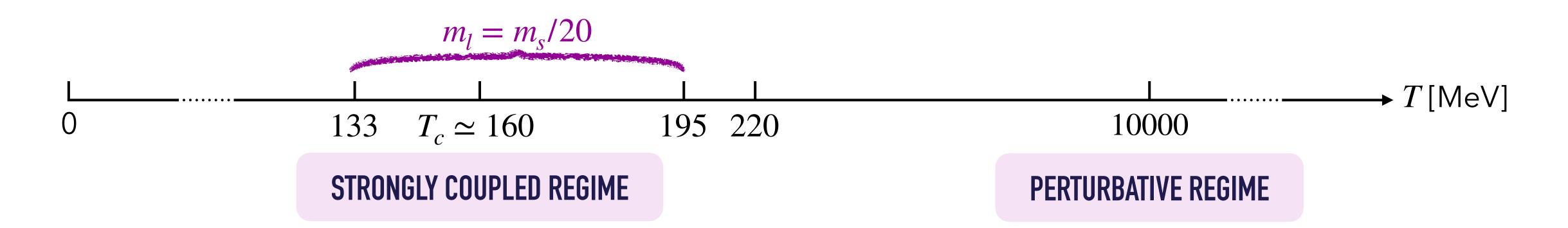
The action S = HIGHLY IMPROVED STAGGERED QUARKS (HISQ)



TREE-LEVEL IMPROVED LÜSCHER-WEISZ

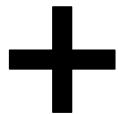
The gauge configurations were generated using the usual Rational Hybrid Monte Carlo (RHMC) algorithm, where each configuration is saved after 10 Monte Carlo (MC) trajectories with an acceptance rate tuned to about 80 %.

At sufficiently high temperatures, the effect of the light quark masses is expected to be negligible. At lower temperatures, and especially near the pseudo-critical temperature T_{c} , these masses can have significant effects.



We have generated lattice data ensembles in 2+1 flavor QCD with physical strange quark masses m_s over a temperature range from T=133 to 10000 MeV on a volume of $N_\sigma^3 \times N_\tau$ with $N_\sigma=64$.

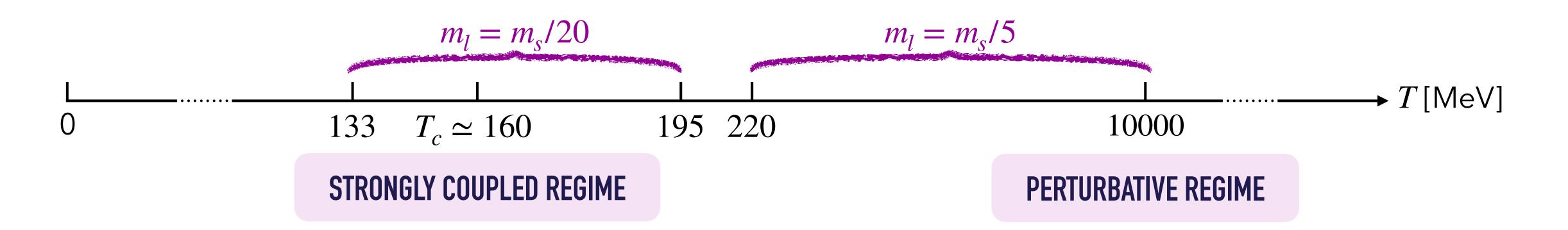
The action S = HIGHLY IMPROVED STAGGERED QUARKS (HISQ)



TREE-LEVEL IMPROVED LÜSCHER-WEISZ

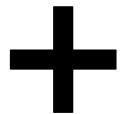
The gauge configurations were generated using the usual Rational Hybrid Monte Carlo (RHMC) algorithm, where each configuration is saved after 10 Monte Carlo (MC) trajectories with an acceptance rate tuned to about 80 %.

At sufficiently high temperatures, the effect of the light quark masses is expected to be negligible. At lower temperatures, and especially near the pseudo-critical temperature T_c , these masses can have significant effects.



We have generated lattice data ensembles in 2+1 flavor QCD with physical strange quark masses m_s over a temperature range from T=133 to 10000 MeV on a volume of $N_\sigma^3 \times N_\tau$ with $N_\sigma=64$.

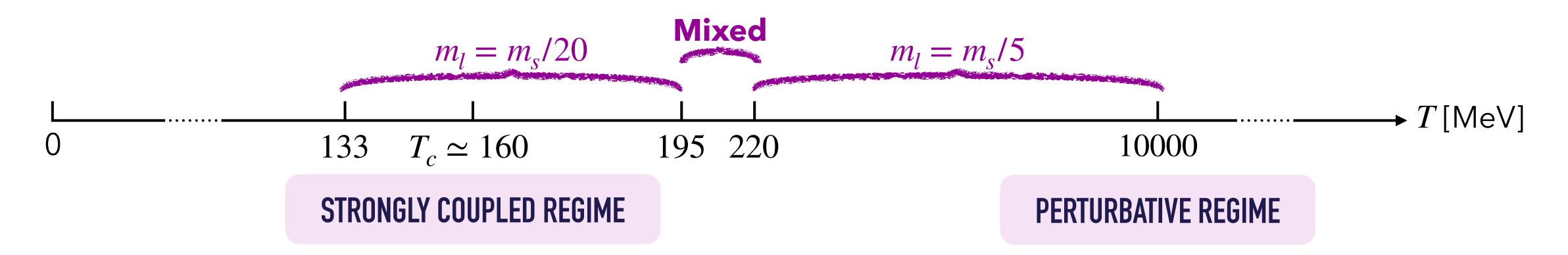
The action S = HIGHLY IMPROVED STAGGERED QUARKS (HISQ)



TREE-LEVEL IMPROVED LÜSCHER-WEISZ

The gauge configurations were generated using the usual Rational Hybrid Monte Carlo (RHMC) algorithm, where each configuration is saved after 10 Monte Carlo (MC) trajectories with an acceptance rate tuned to about 80 %.

At sufficiently high temperatures, the effect of the light quark masses is expected to be negligible. At lower temperatures, and especially near the pseudo-critical temperature T_c , these masses can have significant effects.



Based on previous perturbative studies, we expect that the slopes of the extrapolations will approach zero for very large τT , with a leading term proportional to $1/(\tau T)^2$:

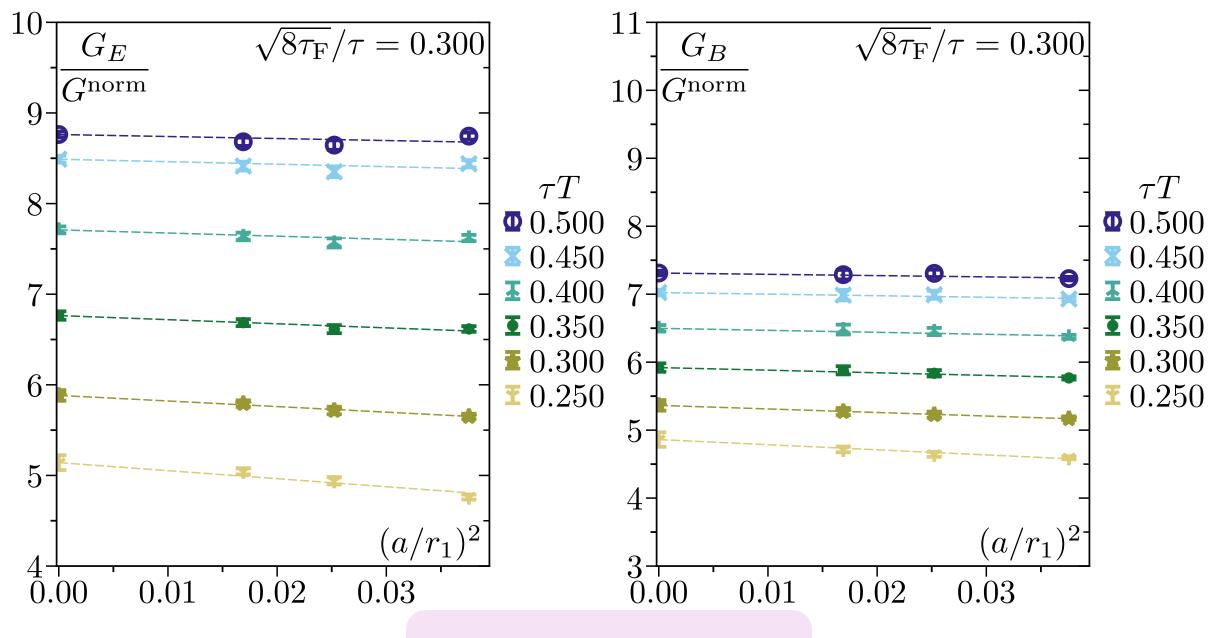
TUMQCD, HotQCD

Based on previous perturbative studies, we expect that the slopes of the extrapolations will approach zero for very large τT , with a leading term proportional to $1/(\tau T)^2$:

$$G_{E,B}(\tau T, a/r_1) = G_{E,B}^{\text{cont}}(\tau T) - \left(\frac{m}{\tau T}\right)^2 \times \left(\frac{a}{r_1}\right)^2$$

Based on previous perturbative studies, we expect that the slopes of the extrapolations will approach zero for very large τT , with a leading term proportional to $1/(\tau T)^2$:

$$G_{E,B}(\tau T, a/r_1) = G_{E,B}^{\text{cont}}(\tau T) - \left(\frac{m}{\tau T}\right)^2 \times \left(\frac{a}{r_1}\right)^2$$



 $T=195\,\mathrm{MEV}$

Based on previous perturbative studies, we expect that the slopes of the extrapolations will approach zero for very large τT , with a leading term proportional to $1/(\tau T)^2$:

$$G_{E,B}(\tau T,a/r_1) = G_{E,B}^{\rm cont}(\tau T) - \left(\frac{m}{\tau T}\right)^2 \times \left(\frac{a}{r_1}\right)^2$$

$$\frac{10}{9} \frac{G_E}{G^{\rm norm}} \sqrt{8\tau_F/\tau} = 0.300$$

$$\frac{11}{10} \frac{G_B}{G^{\rm norm}} \sqrt{8\tau_F/\tau} = 0.300$$

$$\frac{10}{10} \frac{0.500}{0.500} \frac{1}{0.450}$$

$$\frac{10}{10} \frac{0.450}{0.450} \frac{1}{10} \frac{0.450}{0.450}$$

$$\frac{10}{10} \frac{0.450}{0.350} \frac{1}{10} \frac{0.450}{0.350}$$

$$\frac{10}{10} \frac{0.450}{0.350} \frac{1}{10} \frac{0.450}{0.450}$$

$$\frac{10}{10} \frac{0.450}{0.350} \frac{1}{10} \frac{0.450}{0.350}$$

$$\frac{10}{10} \frac{0.450}{0.350} \frac{1}{10} \frac{0.450}{0.450}$$

$$\frac{10}{10} \frac{0.450}{0.350} \frac{1}{10} \frac{0.450}{0.350}$$

$$\frac{10}{10} \frac{0.450}{0.350} \frac{1}{10} \frac{0.450}{0.350} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac$$

To obtain the correct heavy quark diffusion coefficient, the correlators $G_{E,B}$ must be renormalized.

To obtain the correct heavy quark diffusion coefficient, the correlators $G_{E,B}$ must be renormalized.

The renormalization coefficient $Z_E(\beta)$ for the electric correlator G_E is finite at one-loop order in lattice PT.

To obtain the correct heavy quark diffusion coefficient, the correlators $G_{E,B}$ must be renormalized.

The renormalization coefficient $Z_E(\beta)$ for the electric correlator G_E is finite at one-loop order in lattice PT.

Since the correlator is calculated for flow time $\tau_F > 0$, the continuum limit can be safely taken for any value of τ_F and then extrapolated to zero flow, leading to a finite regularization independent result.

To obtain the correct heavy quark diffusion coefficient, the correlators $G_{E,B}$ must be renormalized.

The renormalization coefficient $Z_E(\beta)$ for the electric correlator G_E is finite at one-loop order in lattice PT.

Since the correlator is calculated for flow time $\tau_F > 0$, the continuum limit can be safely taken for any value of τ_F and then extrapolated to zero flow, leading to a finite regularization independent result.

$$G_E^{\overline{ ext{MS}}}(au T,\mu) = Z_{ ext{match}}(\mu,\mu_F)G_E^{ ext{GF}}(au T,\mu_F)$$
, with $Z_{ ext{match}}(\mu,\mu_F) = 1 + O(g_{\overline{ ext{MS}}}^4)$

ELECTRIC MATCHING

The heavy quark is so "heavy" that the quark number is conserved

$$M \to \infty$$

To obtain the correct heavy quark diffusion coefficient, the correlators $G_{E,B}$ must be renormalized.

The renormalization coefficient $Z_E(\beta)$ for the electric correlator G_E is finite at one-loop order in lattice PT.

Since the correlator is calculated for flow time $\tau_F > 0$, the continuum limit can be safely taken for any value of τ_F and then extrapolated to zero flow, leading to a finite regularization independent result.

$$G_E^{\overline{\mathrm{MS}}}(\tau T,\mu) = Z_{\mathrm{match}}(\mu,\mu_F)G_E^{\mathrm{GF}}(\tau T,\mu_F)$$
, with $Z_{\mathrm{match}}(\mu,\mu_F) = 1 + O(g_{\overline{\mathrm{MS}}}^4)$

The situation for the case of the magnetic correlator G_B is more subtle, since the magnetic operator B already involves a non-trivial anomalous dimension γ_0 at 1 loop order.

First 1/M correction, so the current is approximately conserved

To obtain the correct heavy quark diffusion coefficient, the correlators $G_{E,B}$ must be renormalized.

The renormalization coefficient $Z_E(\beta)$ for the electric correlator G_E is finite at one-loop order in lattice PT.

Since the correlator is calculated for flow time $\tau_F > 0$, the continuum limit can be safely taken for any value of τ_F and then extrapolated to zero flow, leading to a finite regularization independent result.

$$G_E^{\overline{\mathrm{MS}}}(\tau T,\mu) = Z_{\mathrm{match}}(\mu,\mu_F)G_E^{\mathrm{GF}}(\tau T,\mu_F)$$
, with $Z_{\mathrm{match}}(\mu,\mu_F) = 1 + O(g_{\overline{\mathrm{MS}}}^4)$

The situation for the case of the magnetic correlator G_B is more subtle, since the magnetic operator B already involves a non-trivial anomalous dimension γ_0 at 1 loop order.

After measuring the correlator directly on the lattice within the GF scheme, we obtain the (finite) scheme-dependent quantity $G_B^{GF}(\tau T, \mu_F)$ and we can transform it into $\overline{\rm MS}$ with the corresponding matching factor.

To obtain the correct heavy quark diffusion coefficient, the correlators $G_{E,B}$ must be renormalized.

The renormalization coefficient $Z_E(\beta)$ for the electric correlator G_E is finite at one-loop order in lattice PT.

Since the correlator is calculated for flow time $\tau_F > 0$, the continuum limit can be safely taken for any value of τ_F and then extrapolated to zero flow, leading to a finite regularization independent result.

$$G_E^{\overline{\mathrm{MS}}}(\tau T,\mu) = Z_{\mathrm{match}}(\mu,\mu_F)G_E^{\mathrm{GF}}(\tau T,\mu_F)$$
, with $Z_{\mathrm{match}}(\mu,\mu_F) = 1 + O(g_{\overline{\mathrm{MS}}}^4)$

The situation for the case of the magnetic correlator G_B is more subtle, since the magnetic operator B already involves a non-trivial anomalous dimension γ_0 at 1 loop order.

After measuring the correlator directly on the lattice within the GF scheme, we obtain the (finite) scheme-dependent quantity $G_B^{GF}(\tau T, \mu_F)$ and we can transform it into $\overline{\rm MS}$ with the corresponding matching factor.

$$G_B^{\overline{\rm MS}}(\tau T,\mu) = Z_{\rm match}(\mu,\mu_F)G_B^{\rm GF}(\tau T,\mu_F), \text{ with } \ln Z_{\rm match}(\mu,\mu_F) = -\gamma_0 g_{\overline{\rm MS}}^2(\mu) \times \left(\ln \frac{\mu^2}{4\mu_F^2} + \gamma_{\rm E}\right)$$

MAGNETIC MATCHING

To obtain the correct heavy quark diffusic 1.67

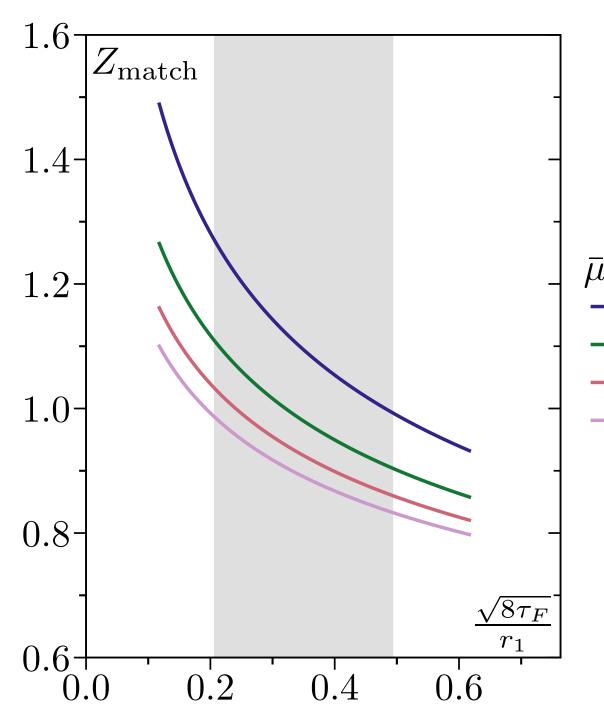
The renormalization coefficient $Z_{\!E}(\beta)$ for t

Since the correlator is calculated for flow and then extrapolated to zero flow, leadir 1.2-

$$G_E^{\overline{\rm MS}}(\tau T, \mu) = Z_{\rm match}$$

The situation for the case of the magnet involves a non-trivial anomalous dimensic 0.8-

After measuring the correlator directly dependent quantity $G_B^{\text{GF}}(\tau T, \mu_F)$ and we c 0.6 ± 0.0



nust be renormalized.

one-loop order in lattice PT.

an be safely taken for any value of τ_F ident result.

$$\frac{3.0}{4.0} \cdot) = 1 + O(g_{\overline{MS}}^4)$$

ice the magnetic operator B already

eme, we obtain the (finite) schemerresponding matching factor.

$$G_B^{\overline{\rm MS}}(\tau T,\mu) = Z_{\rm match}(\mu,\mu_F)G_B^{\rm GF}(\tau T,\mu_F), \text{ with } \ln Z_{\rm match}(\mu,\mu_F) = -\gamma_0 g_{\overline{\rm MS}}^2(\mu) \times \left(\ln \frac{\mu^2}{4\mu_F^2} + \gamma_{\rm E}\right)$$

MAGNETIC MATCHING

We will restrict the extrapolations to the data within the range: $0.25 \le \tau T \le 0.50$ and $0.25 \le \sqrt{8\tau_F}/\tau \le 0.30$.

We will restrict the extrapolations to the data within the range: $0.25 \le \tau T \le 0.50$ and $0.25 \le \sqrt{8\tau_F}/\tau \le 0.30$.

For the electric correlator, the slopes of the extrapolations are expected to have a very weak dependence on τT , but the magnetic correlator data clearly show τT -depend slopes.

We will restrict the extrapolations to the data within the range: $0.25 \le \tau T \le 0.50$ and $0.25 \le \sqrt{8\tau_F}/\tau \le 0.30$.

For the electric correlator, the slopes of the extrapolations are expected to have a very weak dependence on τT , but the magnetic correlator data clearly show τT -depend slopes.

ELECTRIC CORRELATOR

$$G_{E,B}(\tau T, \tau_F) = G_{E,B}^{\tau_F \to 0}(\tau T) + m_{E,B} \times \tau_F$$

All τT together

$$m_E = \mathbf{const}$$

We will restrict the extrapolations to the data within the range: $0.25 \le \tau T \le 0.50$ and $0.25 \le \sqrt{8\tau_F}/\tau \le 0.30$.

For the electric correlator, the slopes of the extrapolations are expected to have a very weak dependence on τT , but the magnetic correlator data clearly show τT -depend slopes.

ELECTRIC CORRELATOR

$$G_{E,B}(\tau T, \tau_F) = G_{E,B}^{\tau_F \to 0}(\tau T) + m_{E,B} \times \tau_F$$

MAGNETIC CORRELATOR

All τT together

$$m_E = \mathbf{const}$$

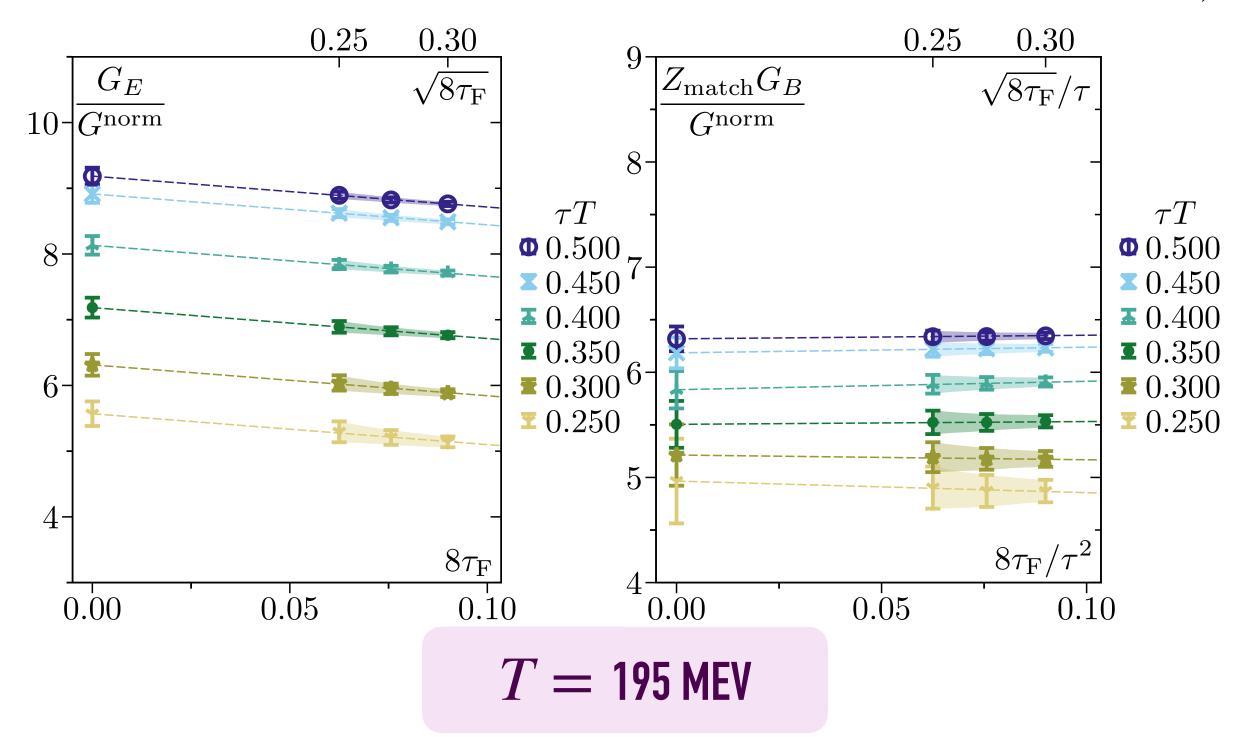
Every τT separately

$$m_B = m_B(\tau T)$$

We will restrict the extrapolations to the data within the range: $0.25 \le \tau T \le 0.50$ and $0.25 \le \sqrt{8\tau_F}/\tau \le 0.30$.

For the electric correlator, the slopes of the extrapolations are expected to have a very weak dependence on τT , but the magnetic correlator data clearly show τT -depend slopes.

$$G_{E,B}(\tau T, \tau_F) = G_{E,B}^{\tau_F \to 0}(\tau T) + m_{E,B} \times \tau_F$$



We will restrict the extrapolations to the data within the range: $0.25 \le \tau T \le 0.50$ and $0.25 \le \sqrt{8\tau_F}/\tau \le 0.30$.

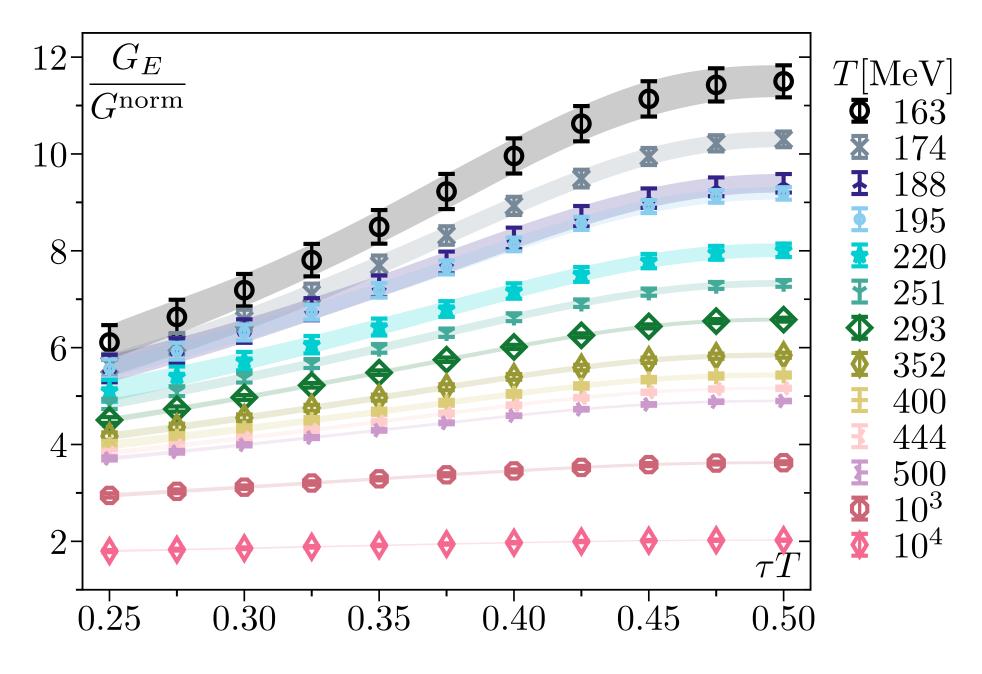
For the electric correlator, the slopes of the extrapolations are expected to have a very weak dependence on τT , but the magnetic correlator data clearly show τT -depend slopes.

$$G_{E,B}(\tau T, \tau_F) = G_{E,B}^{\tau_F \to 0}(\tau T) + m_{E,B} \times \tau_F$$

$$0.25 \quad 0.30 \quad 9 \quad 0.25 \quad 0.30 \quad 0.25 \quad 0.30 \quad 8 \quad 0.25 \quad 0.30 \quad 0.350 \quad$$

DOUBLE EXTRAPOLATED CORRELATORS

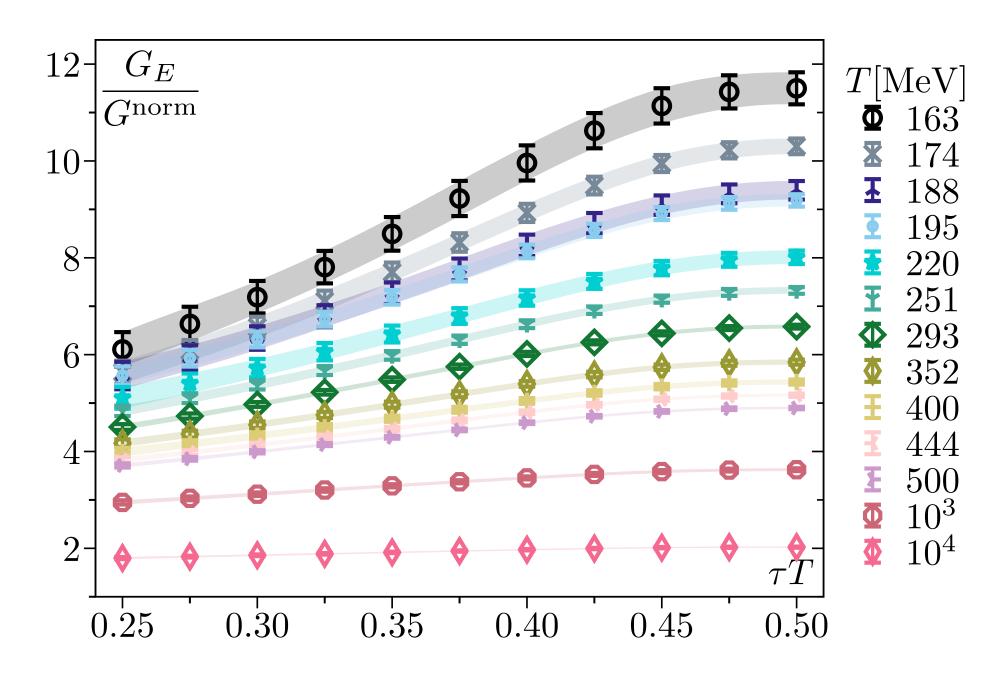
Let us give a look to the continuum and zero flow extrapolated results for both correlators:



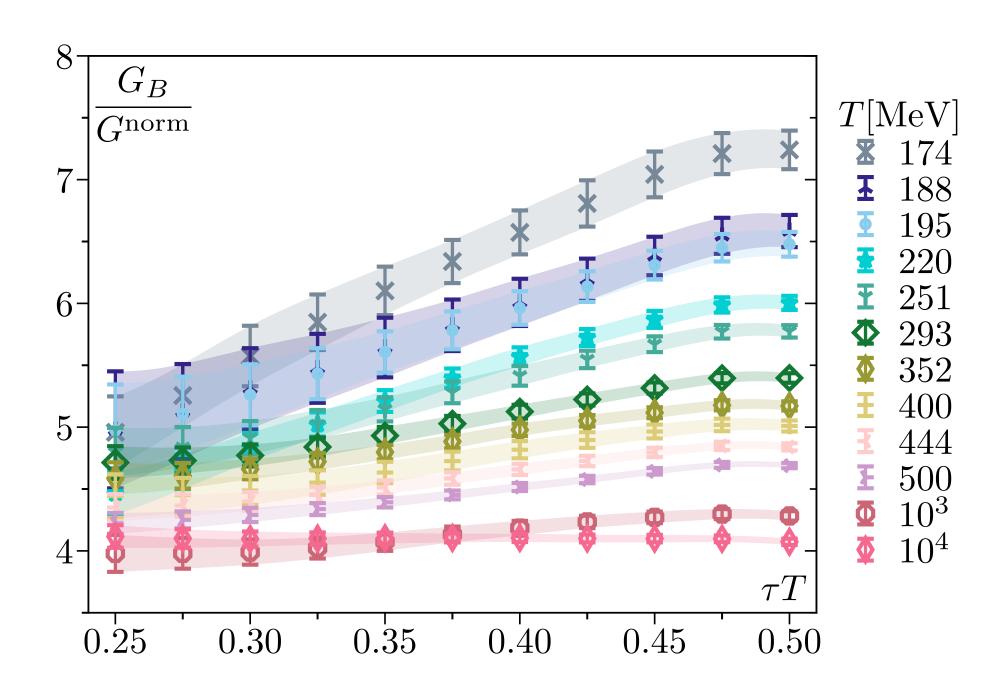
The diffusion coefficient κ is responsible for most of the curvature

DOUBLE EXTRAPOLATED CORRELATORS

Let us give a look to the continuum and zero flow extrapolated results for both correlators:



The diffusion coefficient κ is responsible for most of the curvature



Smaller curvature \rightarrow Smaller κ

PERTURBATIVE QCD ESTIMATES

The diffusion coefficient is encoded in the IR region of the spectral function, so we need to reconstruct the spectral function in some physically motivated way.

The diffusion coefficient is encoded in the IR region of the spectral function, so we need to reconstruct the spectral function in some physically motivated way.

PERTURBATION THEORY

The diffusion coefficient is encoded in the IR region of the spectral function, so we need to reconstruct the spectral function in some physically motivated way.

WE CAN SPLIT THE SPECTRAL FUNCTION INTO IR AND UV PARTS

$$\rho_{E,B}(\omega) = \left\{ \rho_{E,B}^{\mathrm{IR}}(\omega), \rho_{E,B}^{\mathrm{UV}}(\omega) \right\} \text{ with } \rho_{E,B}^{\mathrm{IR}}(\omega) = \frac{\kappa_{E,B}}{2T} \omega \text{ and } \rho_{E,B}^{\mathrm{UV}}(\omega) = K \times \rho_{E,B}^{\mathrm{LO,NLO}}(\omega)$$

The diffusion coefficient is encoded in the IR region of the spectral function, so we need to reconstruct the spectral function in some physically motivated way.

WE CAN SPLIT THE SPECTRAL FUNCTION INTO IR AND UV PARTS

$$\rho_{E,B}(\omega) = \left\{ \rho_{E,B}^{\rm IR}(\omega), \rho_{E,B}^{\rm UV}(\omega) \right\} \text{ with } \rho_{E,B}^{\rm IR}(\omega) = \frac{\kappa_{E,B}}{2T} \omega \text{ and } \rho_{E,B}^{\rm UV}(\omega) = K \times \rho_{E,B}^{\rm LO,NLO}(\omega)$$

$$\rho_{E,B}^{\rm LO}(\omega,\tau) = \frac{g_{\overline{\rm MS}}^2(\mu) C_F}{6\pi} \omega^3$$
 Caron-Huot, Laine, Moore (2009)

The diffusion coefficient is encoded in the IR region of the spectral function, so we need to reconstruct the spectral function in some physically motivated way.

WE CAN SPLIT THE SPECTRAL FUNCTION INTO IR AND UV PARTS

$$\rho_{E,B}(\omega) = \left\{ \rho_{E,B}^{\mathrm{IR}}(\omega), \rho_{E,B}^{\mathrm{UV}}(\omega) \right\} \text{ with } \rho_{E,B}^{\mathrm{IR}}(\omega) = \frac{\kappa_{E,B}}{2T} \omega \text{ and } \rho_{E,B}^{\mathrm{UV}}(\omega) = K \times \rho_{E,B}^{\mathrm{LO},\mathrm{NLO}}(\omega)$$

$$\rho_{E,B}^{\mathrm{LO}}(\omega,\tau) = \frac{g_{\overline{\mathrm{MS}}}^2(\mu)C_F}{6\pi} \omega^3$$

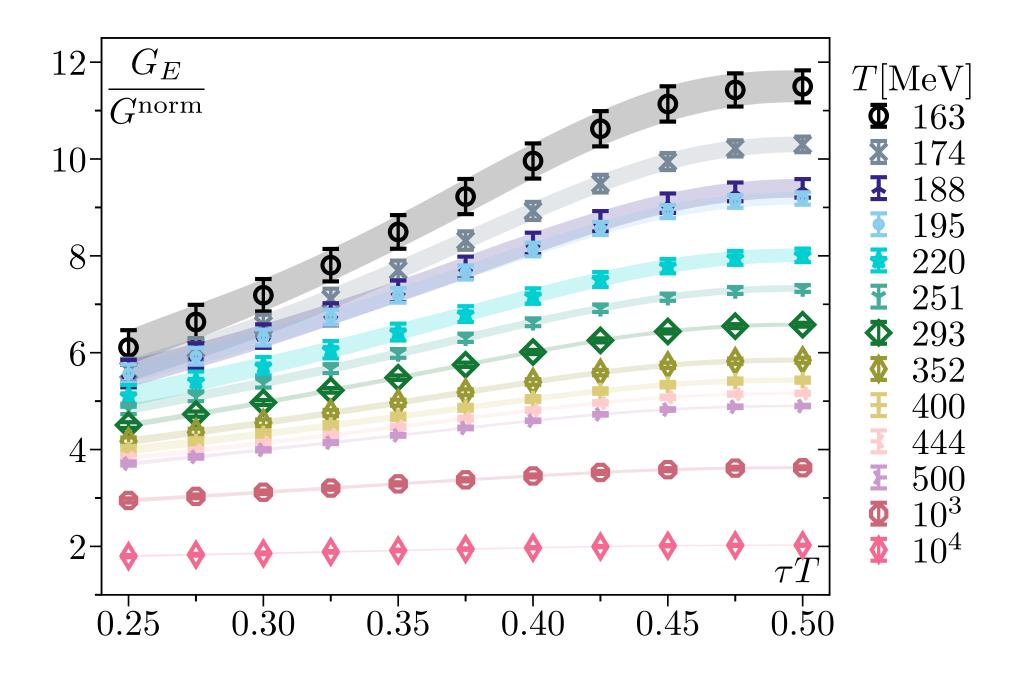
$$\left\{ 1 + \frac{g_{\overline{\mathrm{MS}}}^2(\mu)}{(4\pi)^2} \left[-N_f \left(\frac{2}{3} \ln \frac{\mu^2}{4\omega^2} + \frac{20}{9} \right) + N_c \left(\frac{11}{3} \ln \frac{\mu^2}{4\omega^2} + \frac{149}{9} - \frac{2\pi^2}{3} \right) \right] \right\}$$

$$\rho_B^{\mathrm{NLO}}(\omega,\tau) = \frac{g_{\overline{\mathrm{MS}}}^2(\mu)C_F}{6\pi} \omega^3 \left\{ 1 + \frac{g_{\overline{\mathrm{MS}}}^2(\mu)}{(4\pi)^2} \left[-N_f \left(\frac{2}{3} \ln \frac{\mu^2}{4\omega^2} + \frac{26}{9} \right) + N_c \left(\frac{5}{3} \ln \frac{\mu^2}{4\omega^2} + \frac{134}{9} - \frac{2\pi^2}{3} \right) \right] \right\}$$
 Burnier, Laine, Langelage, Mether (2010) Banerjee, Datta, Laine (2022)

Can we use these LO and NLO estimates and scales to normalize the correlators again?

Can we use these LO and NLO estimates and scales to normalize the correlators again?

Electric spectral function:

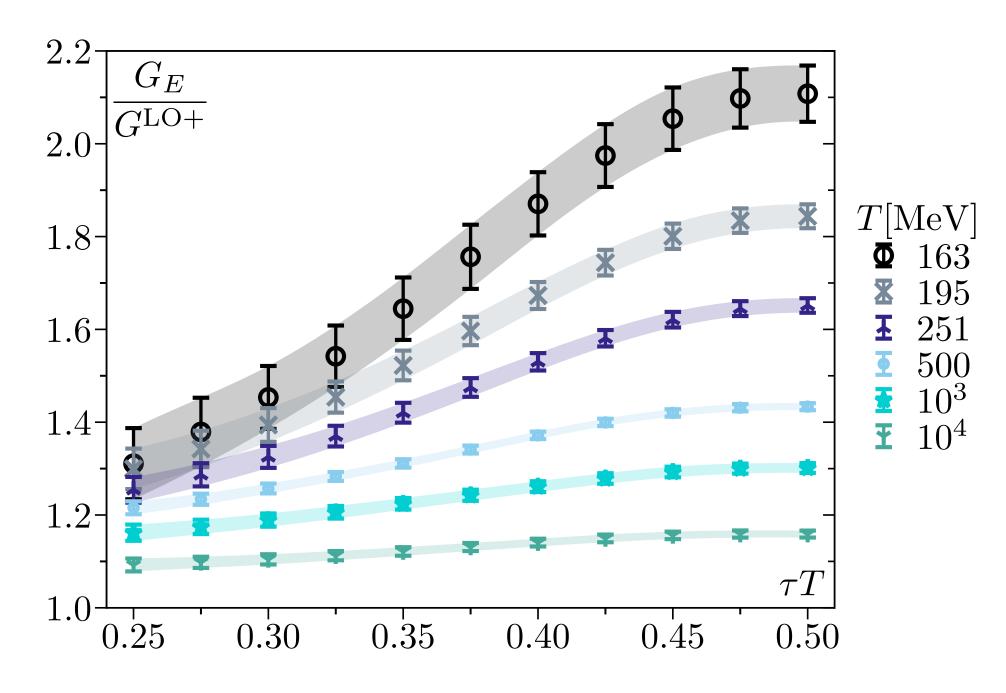


CORRELATORS NORMALIZE BY G^{norm}

Computed with $\rho_E^{\rm LO}(\omega,\tau)$ but factorizing out the running coupling

Can we use these LO and NLO estimates and scales to normalize the correlators again?

Electric spectral function:

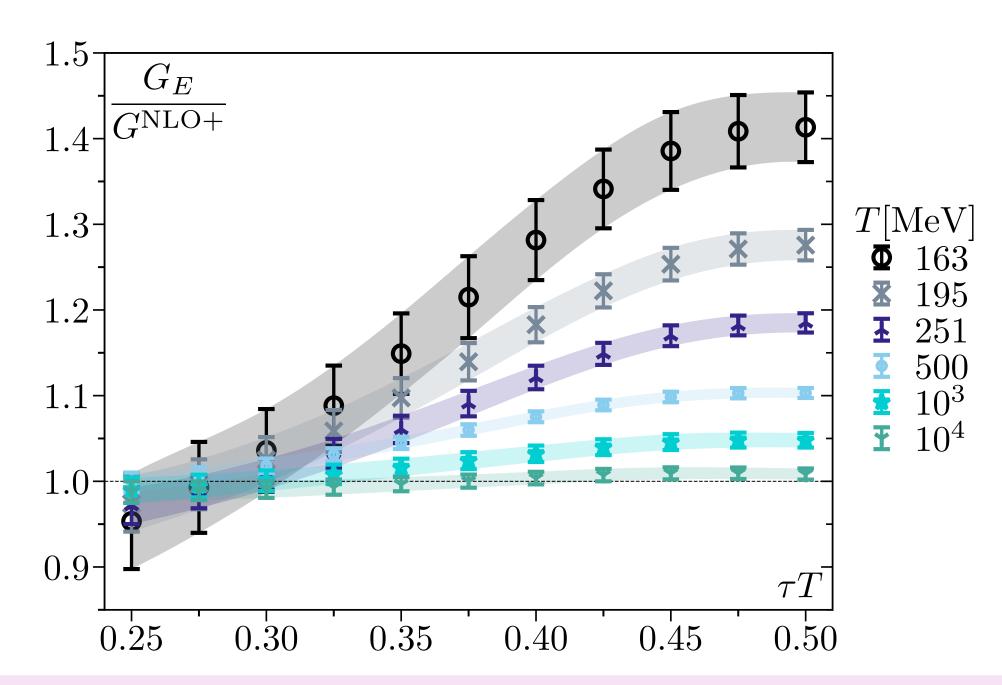


CORRELATORS NORMALIZE BY $G^{\mathrm{LO}+}$

Computed with $\rho_E^{\rm LO}(\omega,\tau)$ and also including the running coupling

Can we use these LO and NLO estimates and scales to normalize the correlators again?

Electric spectral function:



CORRELATORS NORMALIZE BY $G^{
m NLO+}$

Computed with $\rho_E^{\rm NLO}(\omega,\tau)$ and also including the running coupling

THE RATIO IS ALMOST FLAT FOR LARGE T, SO $\kappa o 0$

We can even compare the results with the direct perturbative calculation of the diffusion coefficient.

We can even compare the results with the direct perturbative calculation of the diffusion coefficient.

Only the electric coefficient has been computed in PT

We can even compare the results with the direct perturbative calculation of the diffusion coefficient.

There exist a LO of and NLO direct estimations of the diffusion coefficient:

$$\frac{\kappa_E^{\text{LO}}}{T^3} = \frac{g^4 C_F}{18\pi} \left[\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} \right]$$

Burnier, Laine, Langelage, Mether, Caron-Huot, Moore

$$\xi = 1/2 - \gamma_E + \zeta'(2)/\zeta(2) \simeq -0.64718$$

We can even compare the results with the direct perturbative calculation of the diffusion coefficient.

There exist a LO of and NLO direct estimations of the diffusion coefficient:

$$\frac{\kappa_E^{\text{LO}}}{T^3} = \frac{g^4 C_F}{18\pi} \left[\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} \right]$$

WITH $m_D^2 \equiv g^2 T^2 (N_c + N_f/2)/3$ THE LO DEBYE MASS

Burnier, Laine, Langelage, Mether, Caron-Huot, Moore

We can even compare the results with the direct perturbative calculation of the diffusion coefficient.

There exist a LO of and NLO direct estimations of the diffusion coefficient:

$$\frac{\kappa_E^{\rm LO}}{T^3} = \frac{g^4 C_F}{18\pi} \left[\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} \right]$$
WITH $m_D^2 \equiv g^2 T^2 (N_c + N_f/2)/3$ THE LO DEBYE MASS

$$\frac{\kappa^{\text{NLO}}}{T^3} = \frac{g^4 C_F}{18\pi} \left[\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} + 2.3302 \frac{N_c m_D}{T} \right]$$

Caron-Huot, Moore (2008)

We can even compare the results with the direct perturbative calculation of the diffusion coefficient.

There exist a LO of and NLO direct estimations of the diffusion coefficient:

$$\frac{\kappa_E^{\rm LO}}{T^3} = \frac{g^4 C_F}{18\pi} \left[\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} \right]$$
WITH $m_D^2 \equiv g^2 T^2 (N_c + N_f/2)/3$ THE LO DEBYE MASS

$$\frac{\kappa^{\text{NLO}}}{T^3} = \frac{g^4 C_F}{18\pi} \left[\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} + 2.3302 \frac{N_c m_D}{T} \right]$$

The "convergence" of the expansion, however, is problematic unless the temperature is asymptotically high

We can even compare the results with the direct perturbative calculation of the diffusion coefficient.

There exist a LO of and NLO direct estimations of the diffusion coefficient:

$$\frac{\kappa_E^{\rm LO}}{T^3} = \frac{g^4 C_F}{18\pi} \left(\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} \right)$$
WITH $m_D^2 \equiv g^2 T^2 (N_c + N_f/2)/3$ THE LO DEBYE MASS

$$\frac{\kappa^{\text{NLO}}}{T^3} = \frac{g^4 C_F}{18\pi} \left[\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} + 2.3302 \frac{N_c m_D}{T} \right]$$

The "convergence" of the expansion, however, is problematic unless the temperature is asymptotically high $\kappa_F^{
m LO}$ is obtained under the assumption $m_D \ll T$, which in general is only valid for very large temperatures.

We can even compare the results with the direct perturbative calculation of the diffusion coefficient.

There exist a LO of and NLO direct estimations of the diffusion coefficient:

$$\frac{\kappa_E^{\text{LO}}}{T^3} = \frac{g^4 C_F}{18\pi} \left[\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} \right]$$

WITH $m_D^2 \equiv g^2 T^2 (N_c + N_f/2)/3$ THE LO DEBYE MASS

$$\frac{\kappa^{\text{NLO}}}{T^3} = \frac{g^4 C_F}{18\pi} \left[\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} + 2.3302 \frac{N_c m_D}{T} \right]$$

The "convergence" of the expansion, however, is problematic unless the temperature is asymptotically high $\kappa_E^{\rm LO}$ is obtained under the assumption $m_D \ll T$, which in general is only valid for very large temperatures. Actually, the LO correction is negative at temperatures much larger than the chiral crossover temperature.

We can even compare the results with the direct perturbative calculation of the diffusion coefficient.

There exist a LO of and NLO direct estimations of the diffusion coefficient:

$$\frac{\kappa_E^{\rm LO}}{T^3} = \frac{g^4 C_F}{18\pi} \left[\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} \right]$$
WITH $m_D^2 \equiv g^2 T^2 (N_c + N_f/2)/3$ THE LO DEBYE MASS

$$\frac{\kappa^{\text{NLO}}}{T^3} = \frac{g^4 C_F}{18\pi} \left[\left[N_c + \frac{N_f}{2} \right] \left[\ln \frac{2T}{m_D} + \xi \right] + \frac{N_f \ln 2}{2} + 2.3302 \frac{N_c m_D}{T} \right]$$

The "convergence" of the expansion, however, is problematic unless the temperature is asymptotically high

 $\kappa_E^{
m LO}$ is obtained under the assumption $m_D \ll T$, which in general is only valid for very large temperatures.

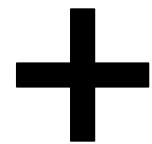
Actually, the LO correction is negative at temperatures much larger than the chiral crossover temperature.

On the other hand, the NLO correction is $O(g^5)$ and very large numerically, and therefore $\kappa_E^{\rm NLO}$ is positive.

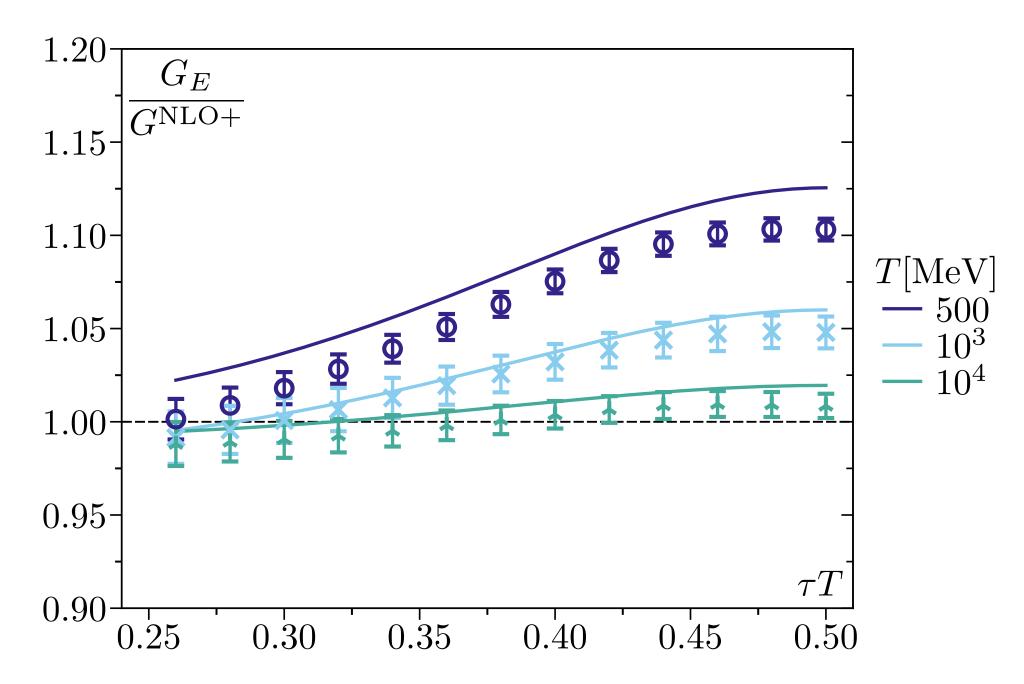
Using $\kappa_E^{
m NLO}$ and $ho_E^{
m NLO}(\omega, au)$ (purely PT) to integrate the spectral function we obtain the correlator at high T:

Using $\kappa_E^{
m NLO}$ and $ho_E^{
m NLO}(\omega, au)$ (purely PT) to integrate the spectral function we obtain the correlator at high T:

LATTICE DATA

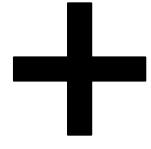


PT PREDICTED CURVE

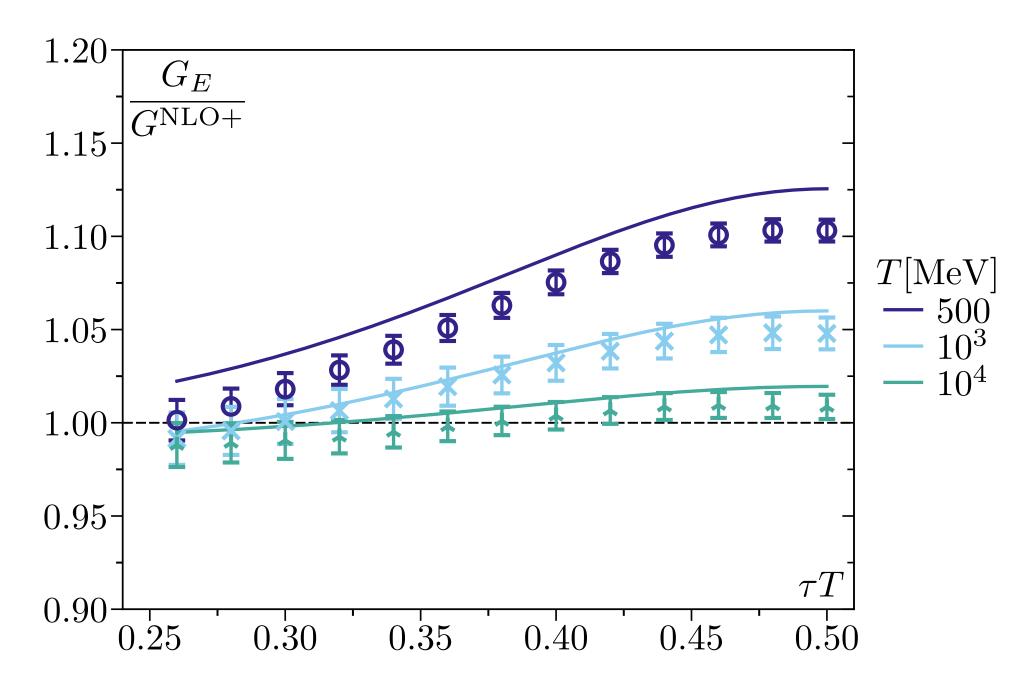


Using $\kappa_E^{
m NLO}$ and $ho_E^{
m NLO}(\omega, au)$ (purely PT) to integrate the spectral function we obtain the correlator at high T:

LATTICE DATA



PT PREDICTED CURVE



GREAT AGREEMENT BETWEEN LATTICE DATA AND PT PREDICTIONS

Let us recall the general form of the spectral function:

Let us recall the general form of the spectral function:

$$\rho_{E,B}(\omega) = \left\{ \rho_{E,B}^{\mathrm{IR}}(\omega), \rho_{E,B}^{\mathrm{UV}}(\omega) \right\} \text{ with } \rho_{E,B}^{\mathrm{IR}}(\omega) = \frac{\kappa_{E,B}}{2T} \omega \text{ and } \rho_{E,B}^{\mathrm{UV}}(\omega) = K \times \rho_{E,B}^{\mathrm{LO,NLO}}(\omega)$$

Let us recall the general form of the spectral function:

$$\rho_{E,B}(\omega) = \left\{ \rho_{E,B}^{\mathrm{IR}}(\omega), \rho_{E,B}^{\mathrm{UV}}(\omega) \right\} \text{ with } \rho_{E,B}^{\mathrm{IR}}(\omega) = \frac{\kappa_{E,B}}{2T} \omega \text{ and } \rho_{E,B}^{\mathrm{UV}}(\omega) = K \times \rho_{E,B}^{\mathrm{LO},\mathrm{NLO}}(\omega)$$

How do we model the transition between the IR and UV regimes?

Let us recall the general form of the spectral function:

$$\rho_{E,B}(\omega) = \left\{ \rho_{E,B}^{\mathrm{IR}}(\omega), \rho_{E,B}^{\mathrm{UV}}(\omega) \right\} \text{ with } \rho_{E,B}^{\mathrm{IR}}(\omega) = \frac{\kappa_{E,B}}{2T} \omega \text{ and } \rho_{E,B}^{\mathrm{UV}}(\omega) = K \times \rho_{E,B}^{\mathrm{LO,NLO}}(\omega)$$

How do we model the transition between the IR and UV regimes?

$$\rho_{max}(\omega, T) = \max\{\rho^{\text{IR}}(\omega, T), \rho^{\text{UV}}(\omega)\}\$$

Let us recall the general form of the spectral function:

$$\rho_{E,B}(\omega) = \left\{ \rho_{E,B}^{\mathrm{IR}}(\omega), \rho_{E,B}^{\mathrm{UV}}(\omega) \right\} \text{ with } \rho_{E,B}^{\mathrm{IR}}(\omega) = \frac{\kappa_{E,B}}{2T} \omega \text{ and } \rho_{E,B}^{\mathrm{UV}}(\omega) = K \times \rho_{E,B}^{\mathrm{LO},\mathrm{NLO}}(\omega)$$

How do we model the transition between the IR and UV regimes?

Sharp transition:

$$\rho_{max}(\omega, T) = \max\{\rho^{\mathrm{IR}}(\omega, T), \rho^{\mathrm{UV}}(\omega)\}\$$

Smooth transition:

$$\rho_{smax}(\omega, T) = \sqrt{\rho^{IR^2}(\omega, T) + \rho^{UV^2}(\omega)}$$

Let us recall the general form of the spectral function:

$$\rho_{E,B}(\omega) = \left\{ \rho_{E,B}^{\mathrm{IR}}(\omega), \rho_{E,B}^{\mathrm{UV}}(\omega) \right\} \text{ with } \rho_{E,B}^{\mathrm{IR}}(\omega) = \frac{\kappa_{E,B}}{2T} \omega \text{ and } \rho_{E,B}^{\mathrm{UV}}(\omega) = K \times \rho_{E,B}^{\mathrm{LO},\mathrm{NLO}}(\omega)$$

How do we model the transition between the IR and UV regimes?

Sharp transition:

$$\rho_{max}(\omega, T) = \max\{\rho^{\text{IR}}(\omega, T), \rho^{\text{UV}}(\omega)\}\$$

Smooth transition:

$$\rho_{smax}(\omega, T) = \sqrt{\rho^{IR^2}(\omega, T) + \rho^{UV^2}(\omega)}$$

Direct sum transition:

$$\rho_{sum}(\omega, T) = \rho^{IR}(\omega, T) + \rho^{UV}(\omega)$$

Let us recall the general form of the spectral function:

$$\rho_{E,B}(\omega) = \left\{ \rho_{E,B}^{\mathrm{IR}}(\omega), \rho_{E,B}^{\mathrm{UV}}(\omega) \right\} \text{ with } \rho_{E,B}^{\mathrm{IR}}(\omega) = \frac{\kappa_{E,B}}{2T} \omega \text{ and } \rho_{E,B}^{\mathrm{UV}}(\omega) = K \times \rho_{E,B}^{\mathrm{LO},\mathrm{NLO}}(\omega)$$

How do we model the transition between the IR and UV regimes?

Sharp transition:

$$\rho_{max}(\omega, T) = \max\{\rho^{IR}(\omega, T), \rho^{UV}(\omega)\}\$$

Smooth transition:

$$\rho_{smax}(\omega, T) = \sqrt{\rho^{IR^2}(\omega, T) + \rho^{UV^2}(\omega)}$$

Direct sum transition:

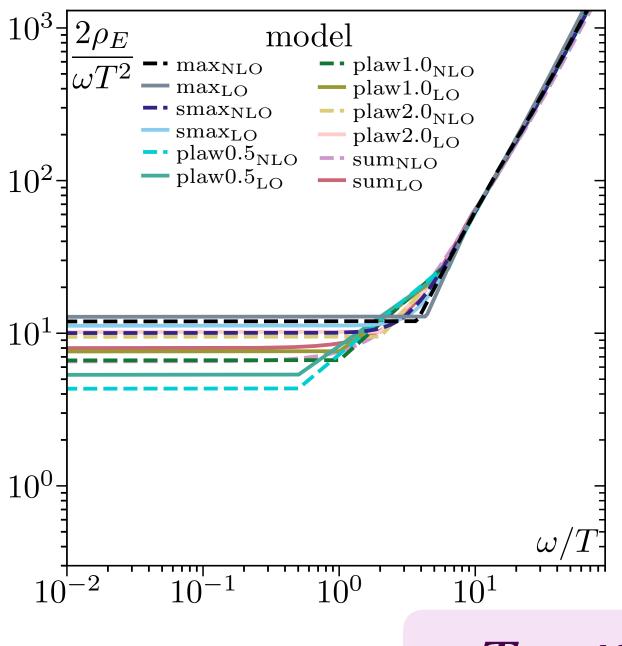
$$\rho_{sum}(\omega, T) = \rho^{IR}(\omega, T) + \rho^{UV}(\omega)$$

Polynomial transition:

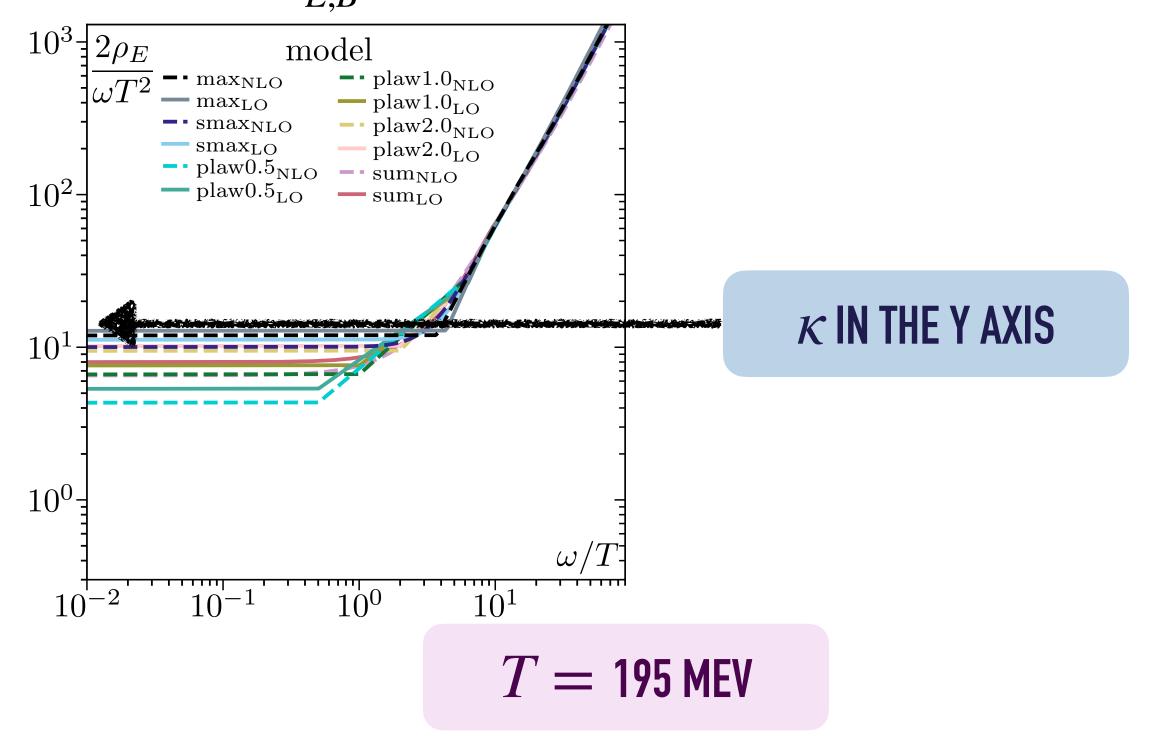
$$\omega_{
m IR}/T=$$
 0.5, 1.0, 2.0
$$-\frac{1}{T}$$

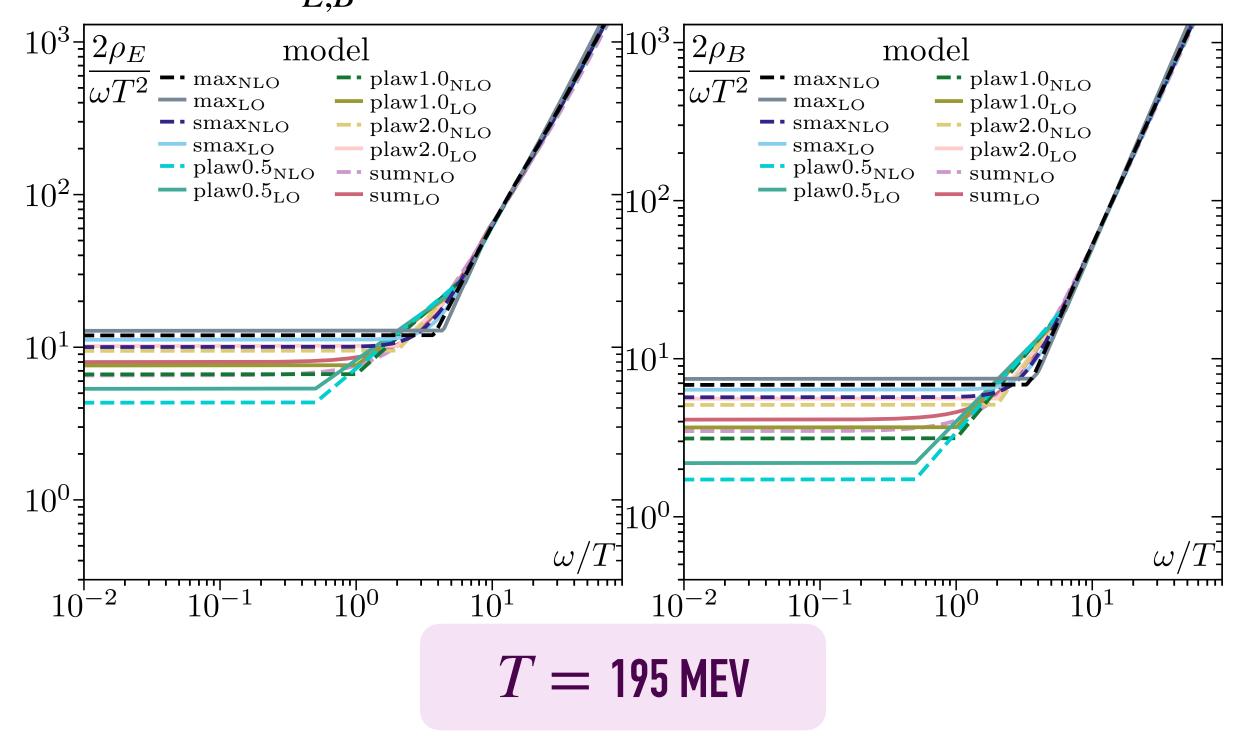
$$\omega_{
m UV}/T=2\pi$$

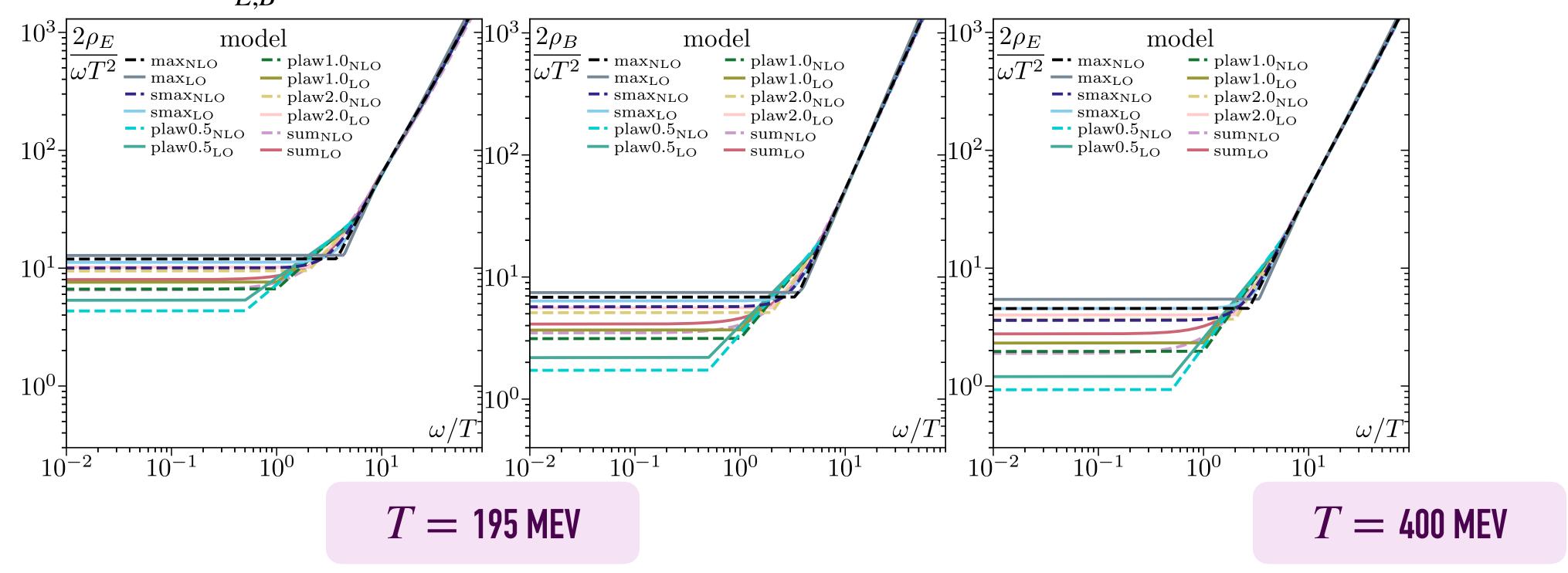
We now present the results of using the previously discussed fitting techniques to extract the diffusion coefficients $\kappa_{E,B}/T^3$.

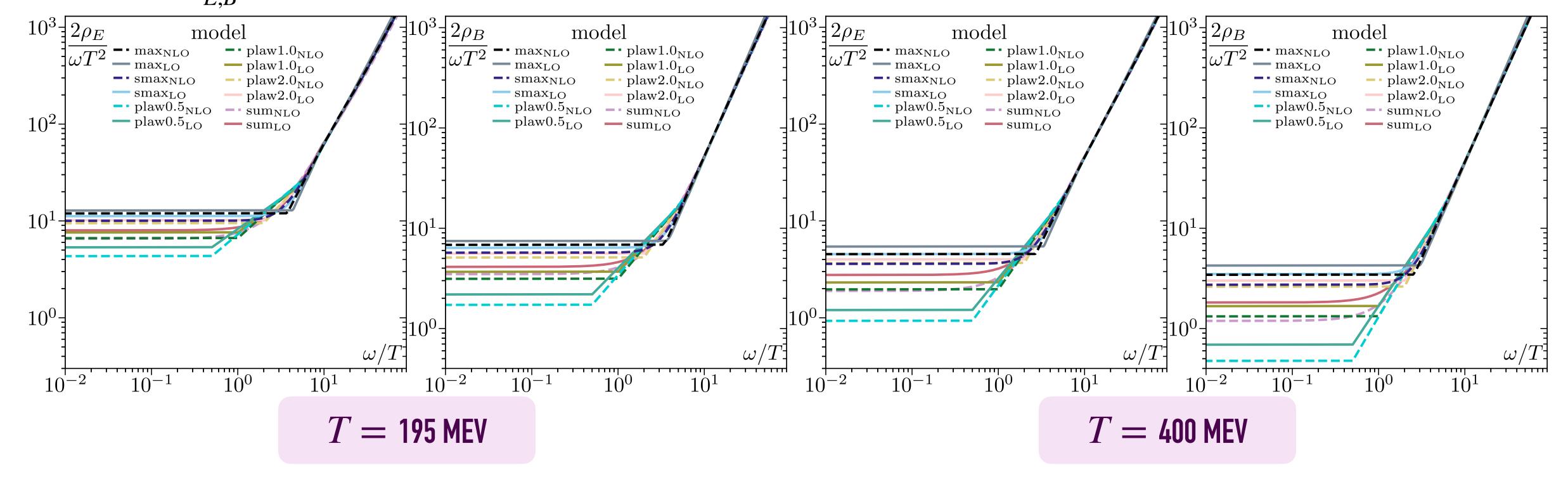


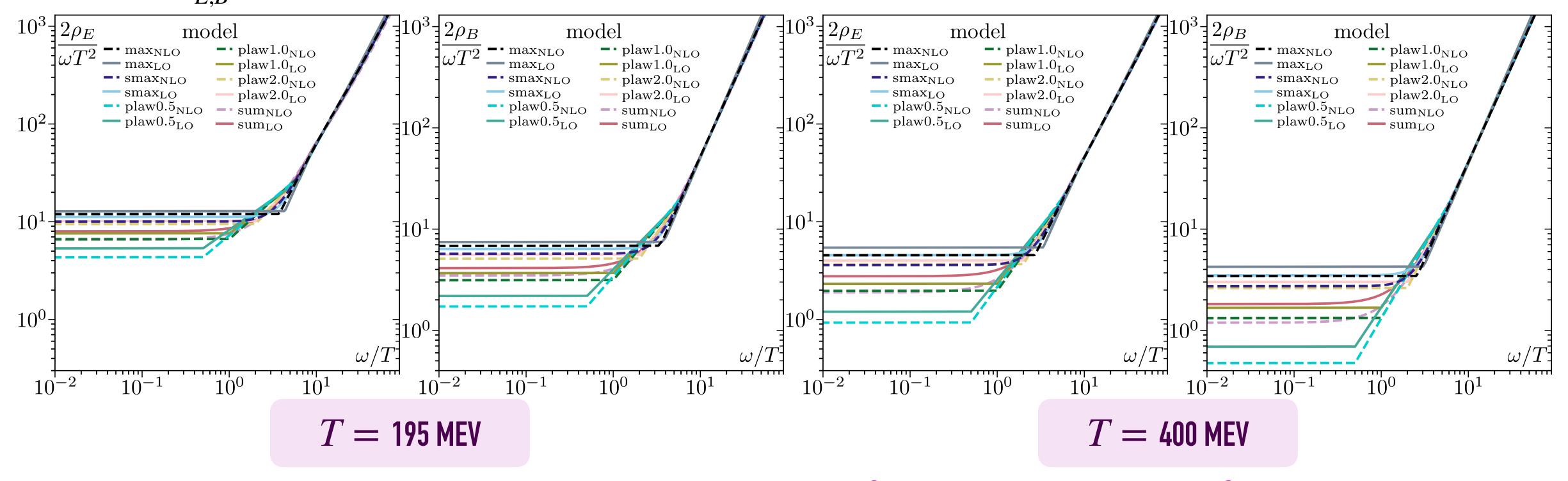
 $T=195\,\mathrm{MEV}$











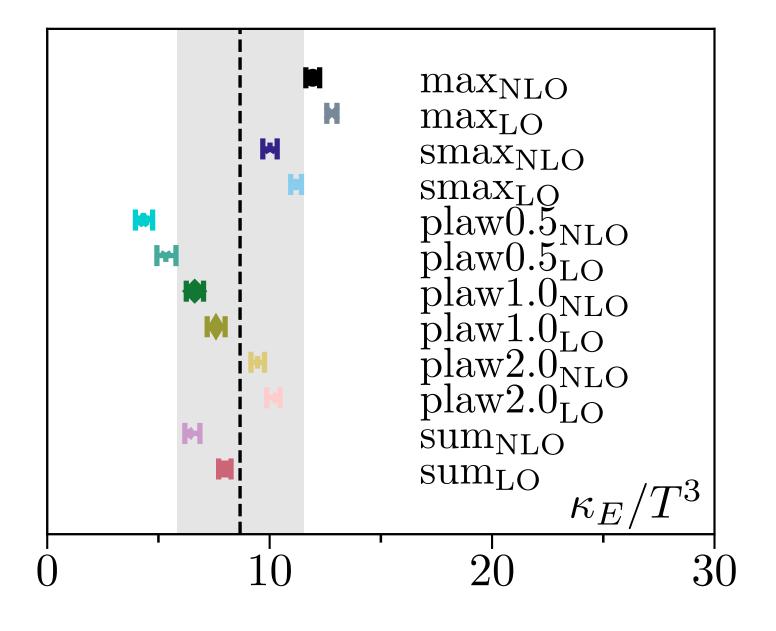
The max model consistently yields the largest values of κ , while the power-law fit with $\omega_{\rm IR}/T=0.5$ systematically yields the smallest one

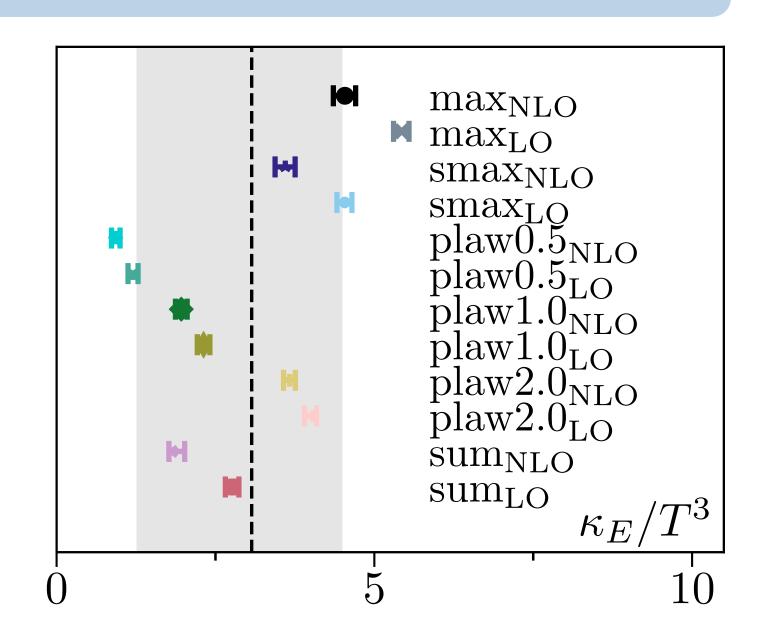
HEAVY QUARK DIFFUSIONS RESULTS

We now present our final results for the momentum diffusion coefficient.

ELECTRIC MOMENTUM COEFFICIENT

 $T=195\,\mathrm{MEV}$



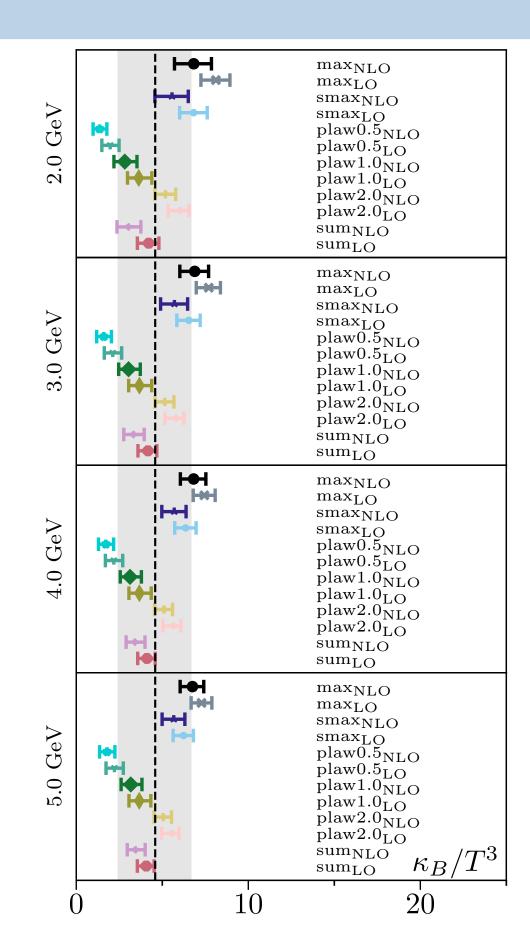


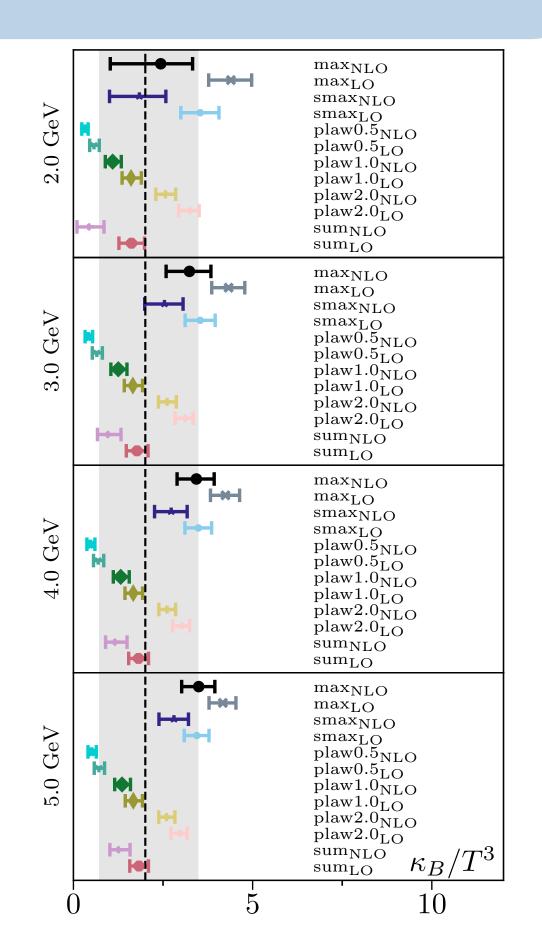
 $T=400\,\mathrm{MEV}$

We now present our final results for the momentum diffusion coefficient.

MAGNETIC MOMENTUM COEFFICIENT

 $T=195\,\mathrm{MEV}$





 $T=400~\mathrm{MEV}$

PERTURBATIVE QCD ESTIMATES

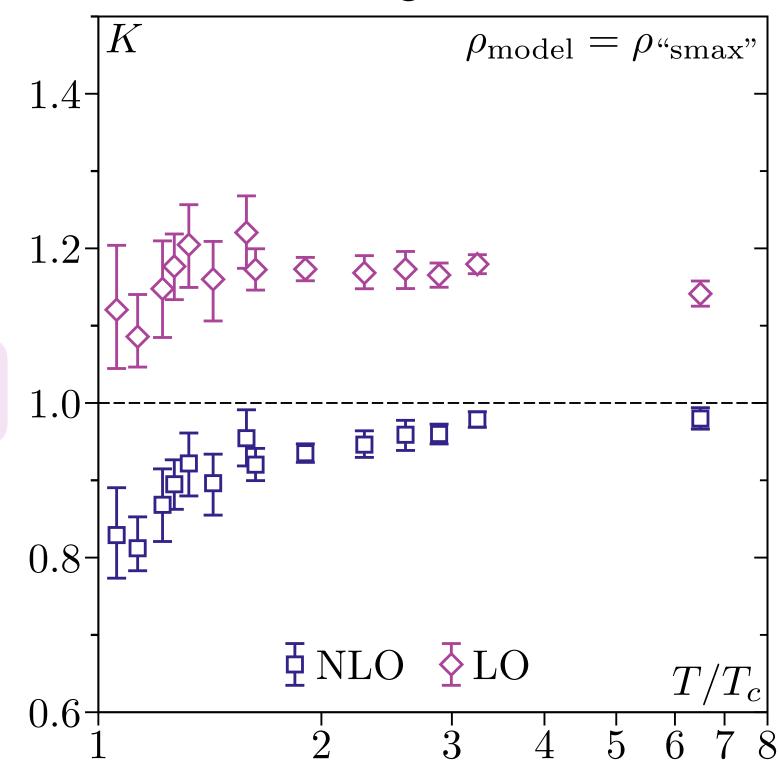
SPECTRAL RECONSTRUCTION

Let us take a closer look at the rescaling k factors.

ELECTRIC K FACTOR

SPECTRAL RECONSTRUCTION

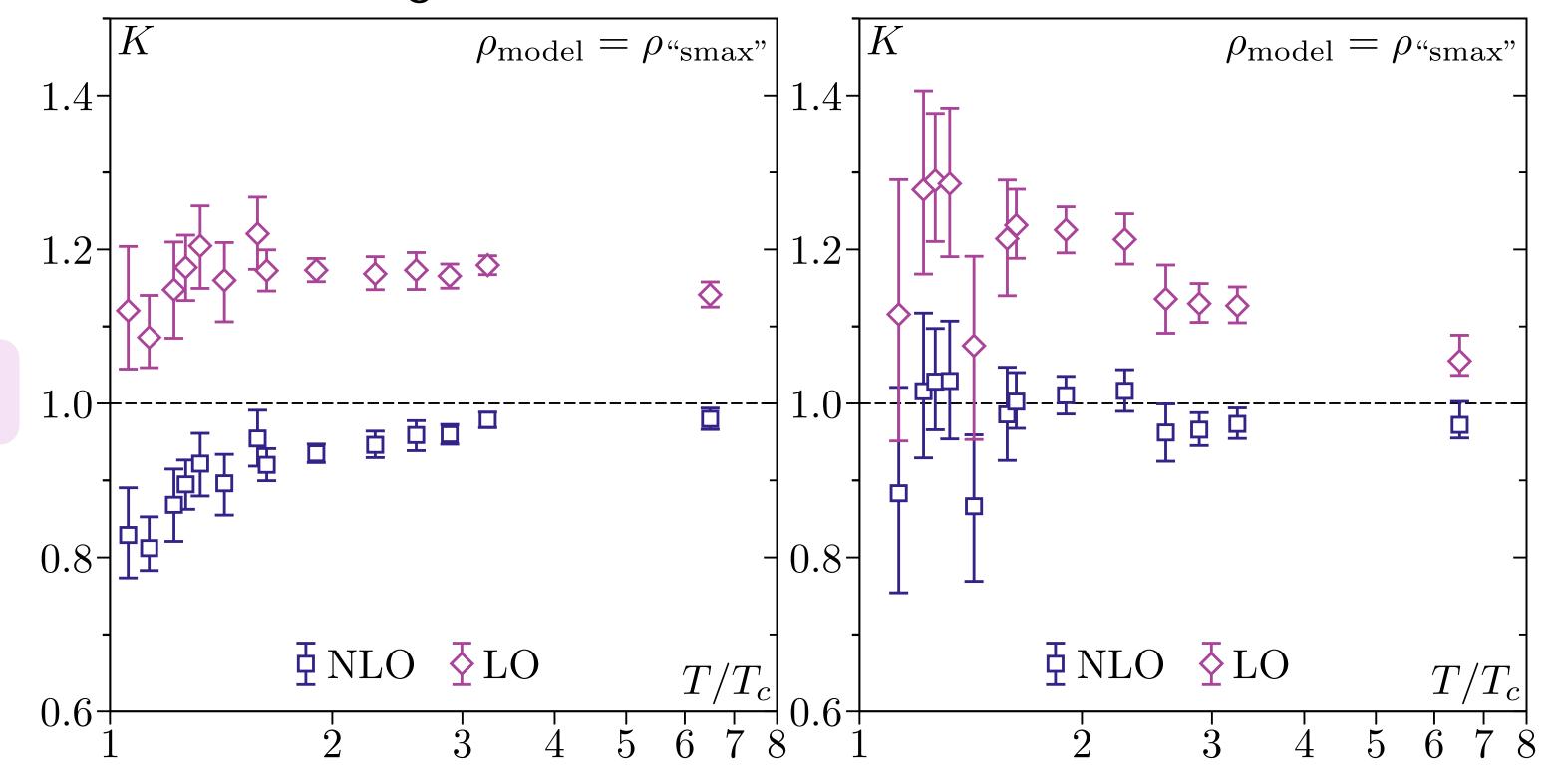
Let us take a closer look at the rescaling K factors.



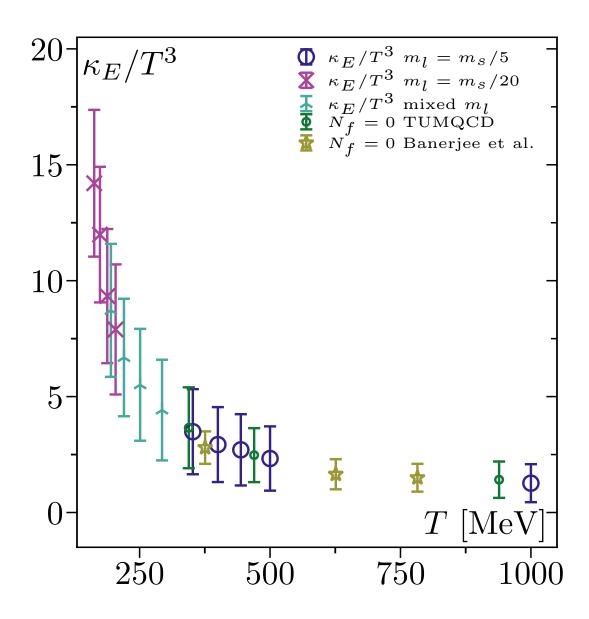
ELECTRIC K FACTOR

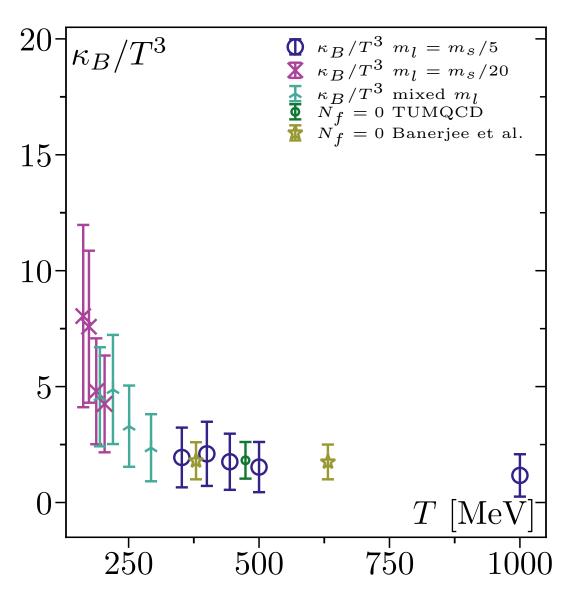
SPECTRAL RECONSTRUCTION

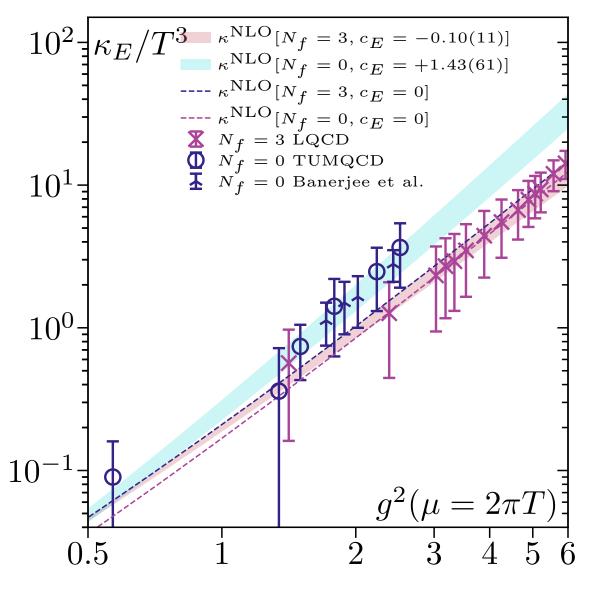
Let us take a closer look at the rescaling k factors.

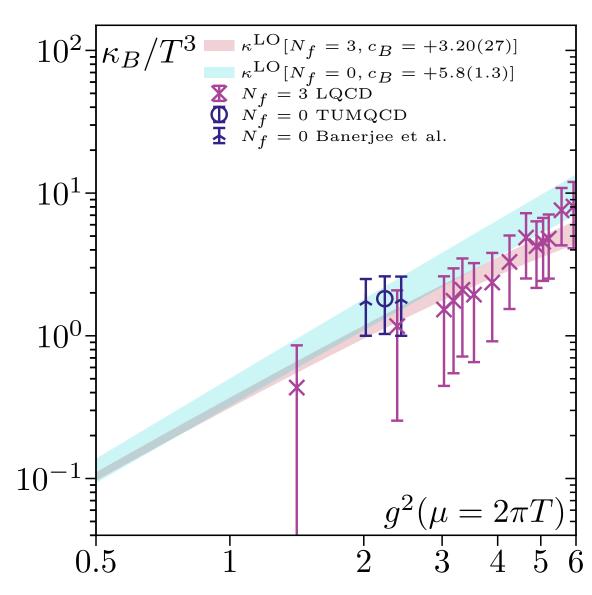


MAGNETIC K FACTOR

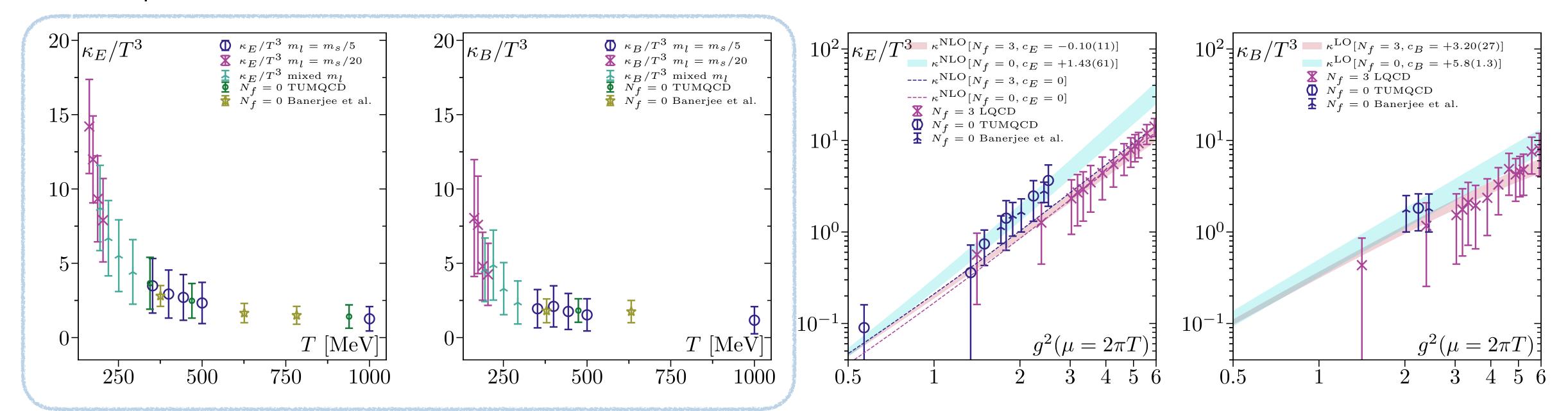








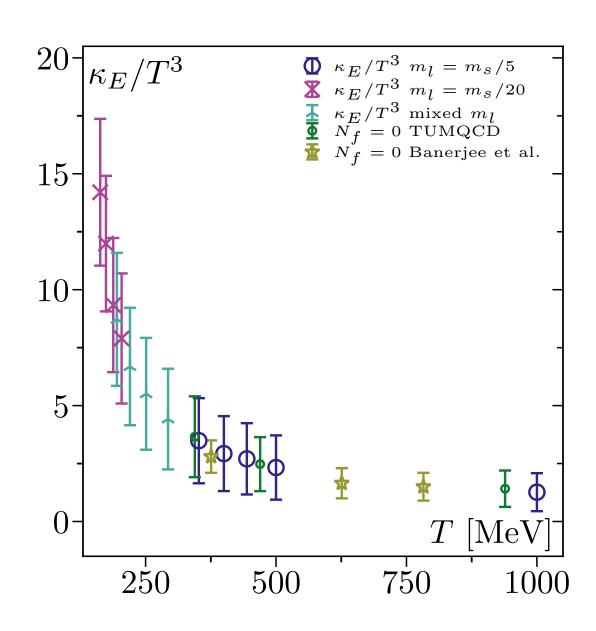
We now present our final results for the momentum diffusion coefficient.

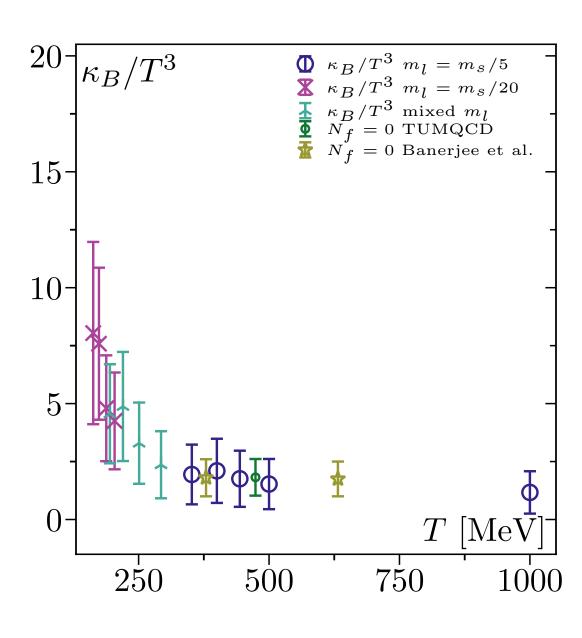


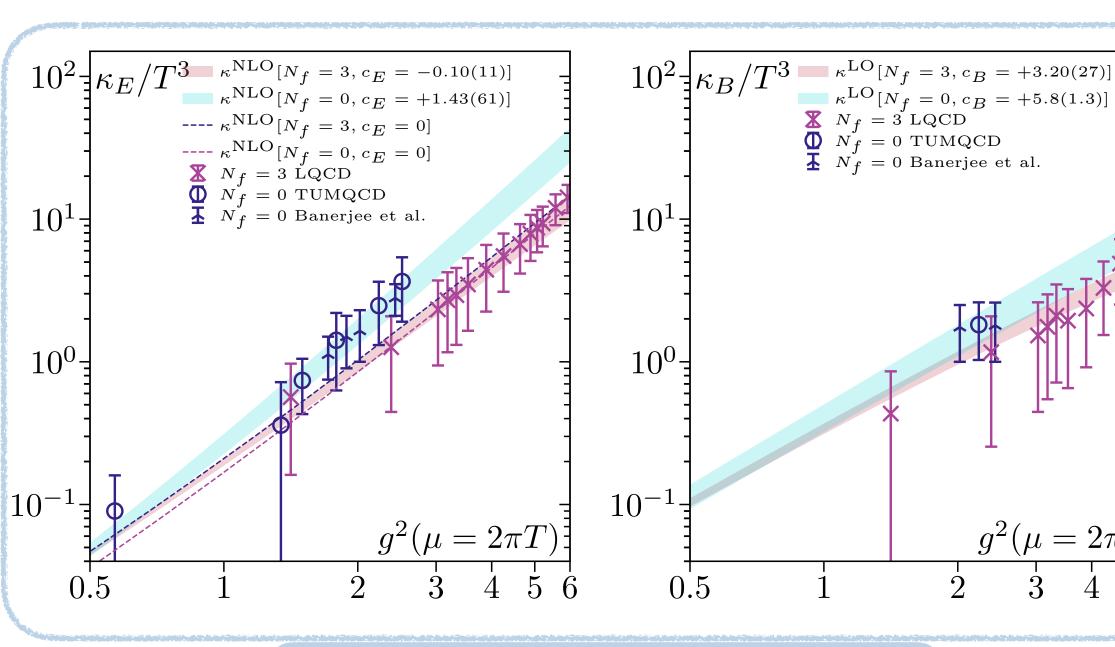
LARGE TEMPERATURE DEPENDENCE

COMPATIBLE RESULTS WITH QUENCHED THEORY

We now present our final results for the momentum diffusion coefficient.



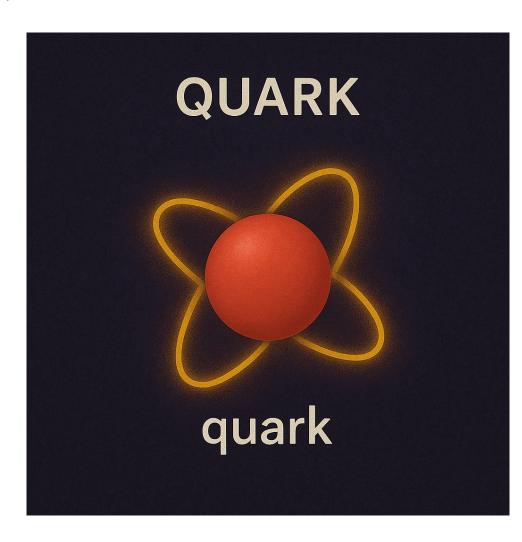


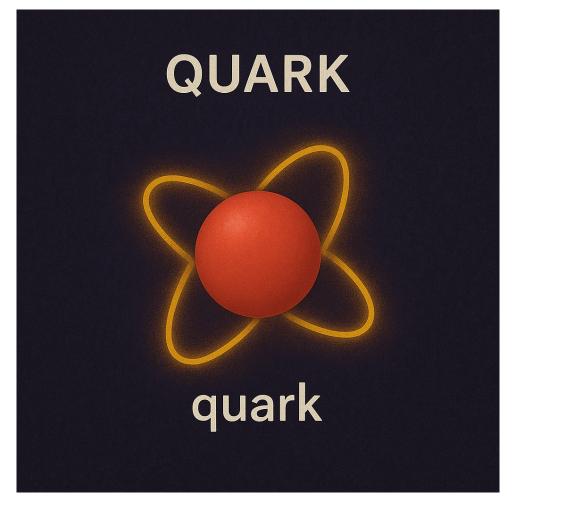


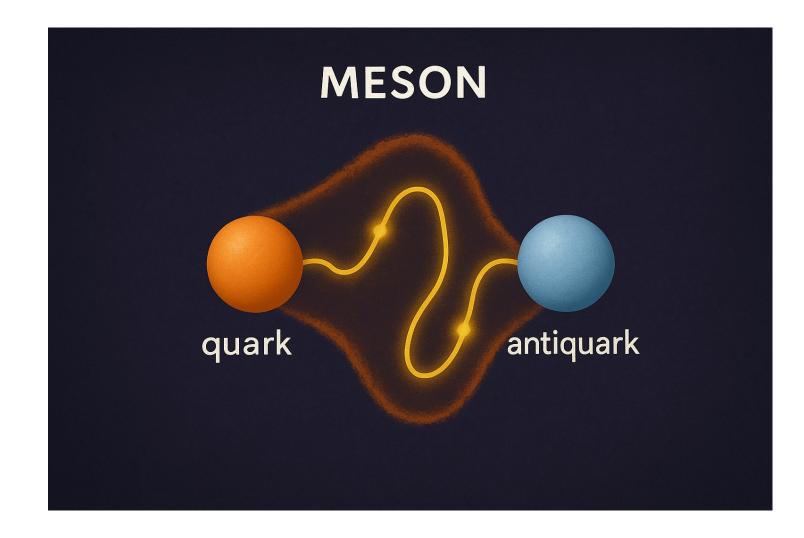
INCOMPATIBLE WITH g^2

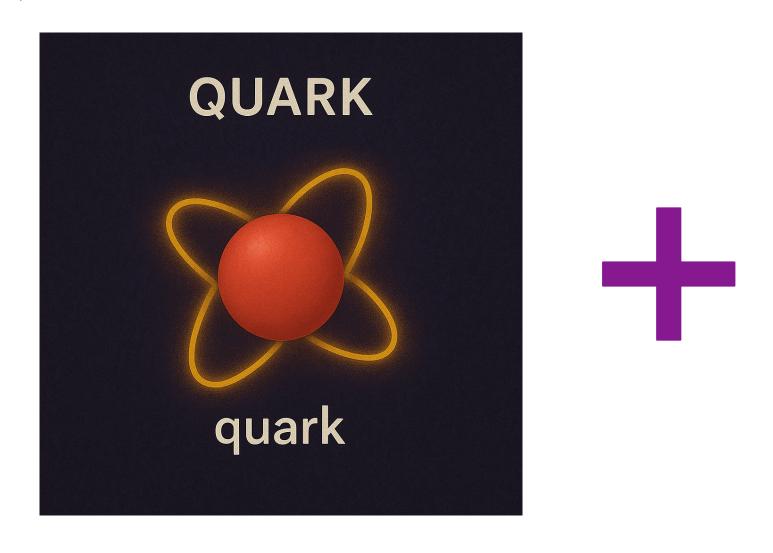
 $g^2(\mu = 2\pi T$

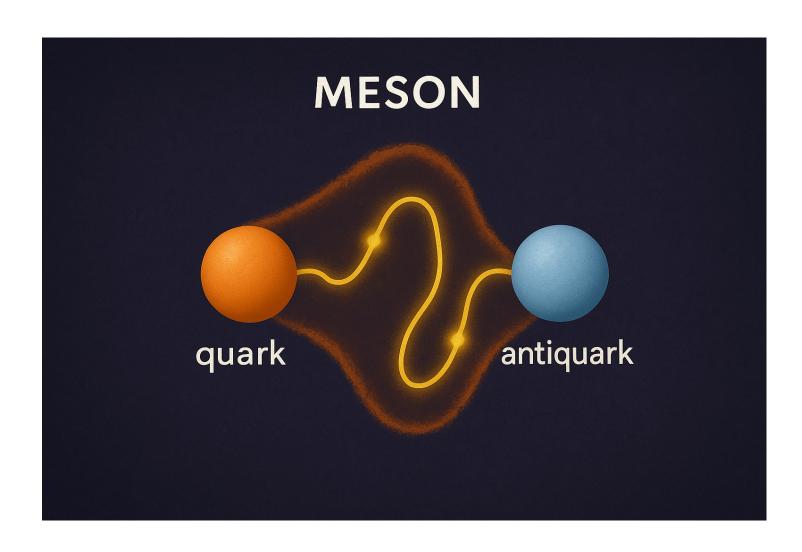
QCD IS MUCH CLOSER TO PERTURBATION THEORY

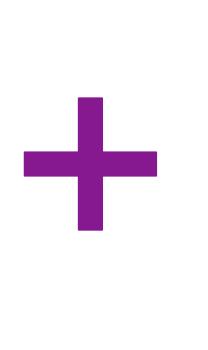


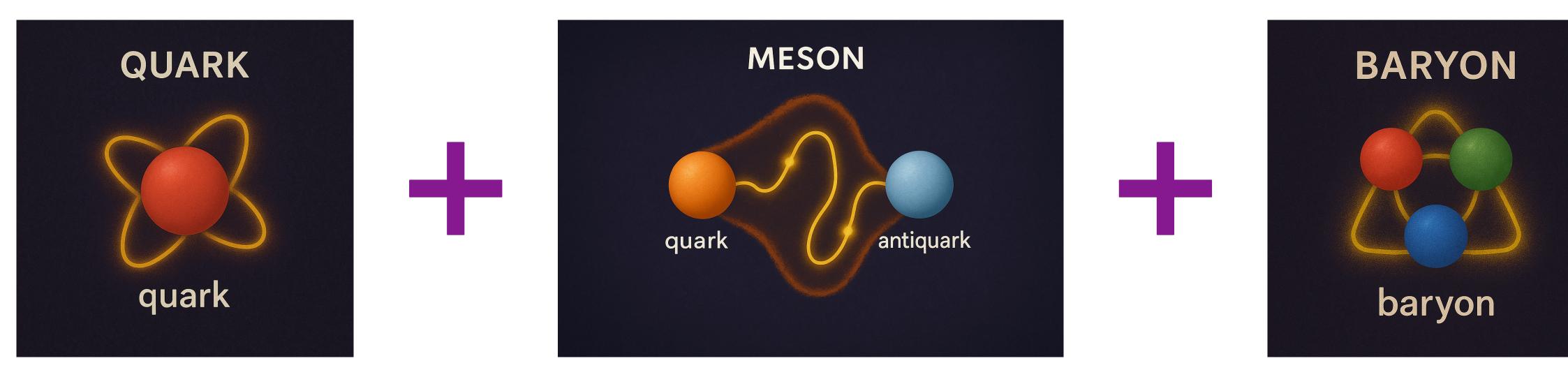






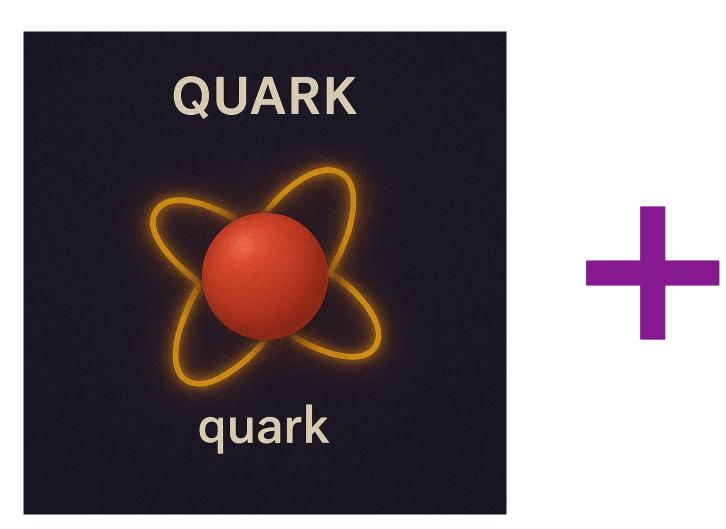


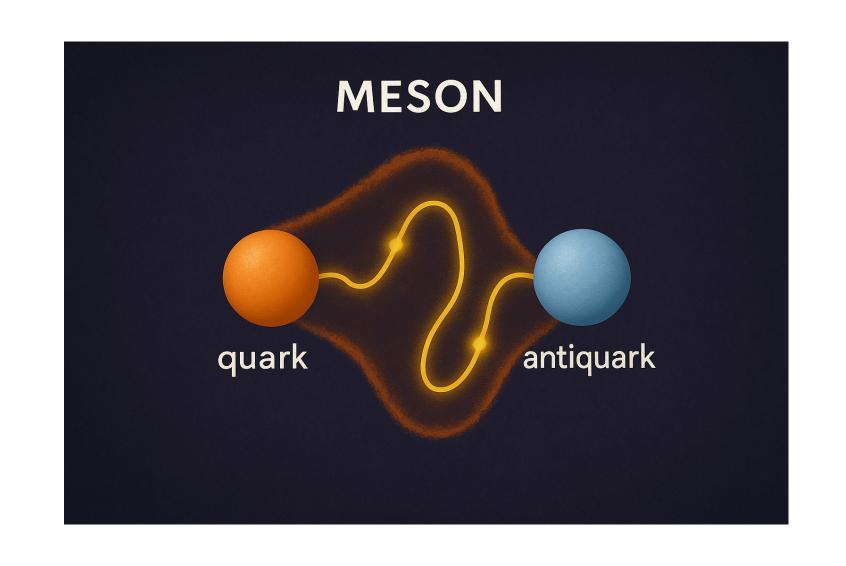




In the QPM, the quark susceptibility is written as:

$$\chi_q(T) = \frac{1}{\pi} \sum_i g_i \int \frac{d^3p}{(2\pi)^3} e^{-E_p^i/T} \text{ with } E_p^i = \sqrt{p^2 + M_i^2}$$





In the QPM, the quark susceptibility is written as:

$$\chi_q(T) = \frac{1}{\pi} \sum_i g_i \int \frac{d^3p}{(2\pi)^3} e^{-E_p^i/T} \text{ with } E_p^i = \sqrt{p^2 + M_i^2}$$

The mean thermal squared-velocity and square momentum are:

$$\langle \mathbf{v}^2 \rangle = \frac{1}{\pi \chi_c(T)} \sum_i g_i \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{p^2}{(E_p^i)^2} e^{-E_p^i/T} \qquad \langle \mathbf{p}^2 \rangle = \frac{1}{\pi \chi_c(T)} \sum_i g_i \int \frac{\mathrm{d}^3 p}{(2\pi)^3} p^2 e^{-E_p^i/T}$$

For charm quarks:

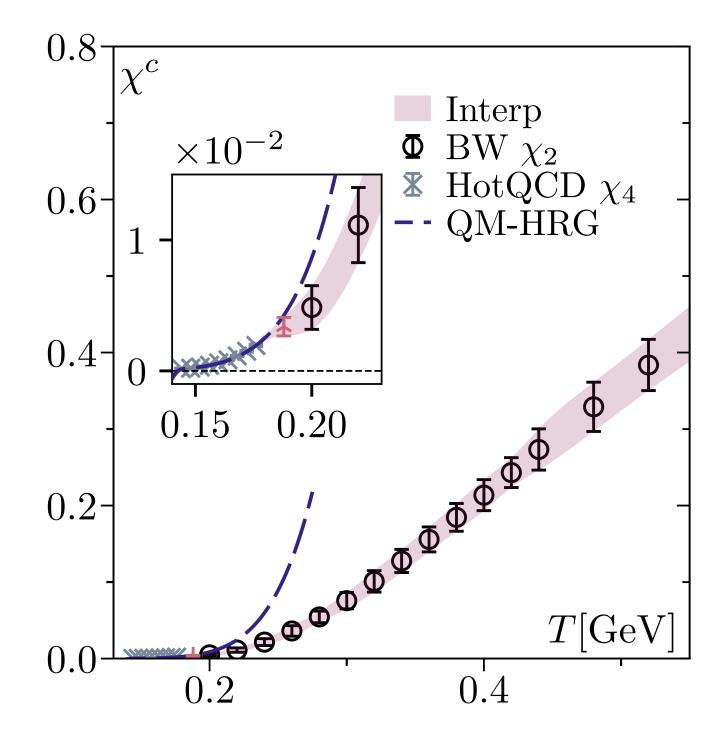
We use the charm susceptibilities from the lattice.

$$\chi_n^C = \frac{\partial^n (p_C(T)/T^4)}{\partial (\mu_C/T)^n}, \ n = 2,4$$

For charm quarks:

We use the charm susceptibilities from the lattice.

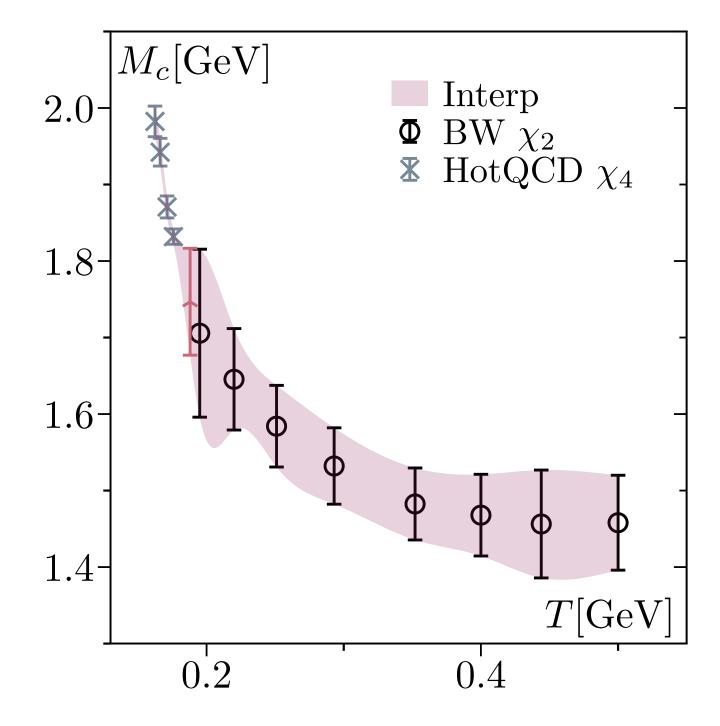
$$\chi_n^C = \frac{\partial^n (p_C(T)/T^4)}{\partial (\mu_C/T)^n}, n = 2,4$$



For charm quarks:

We use the charm susceptibilities from the lattice.

$$\chi_n^C = \frac{\partial^n (p_C(T)/T^4)}{\partial (\mu_C/T)^n}, n = 2,4$$

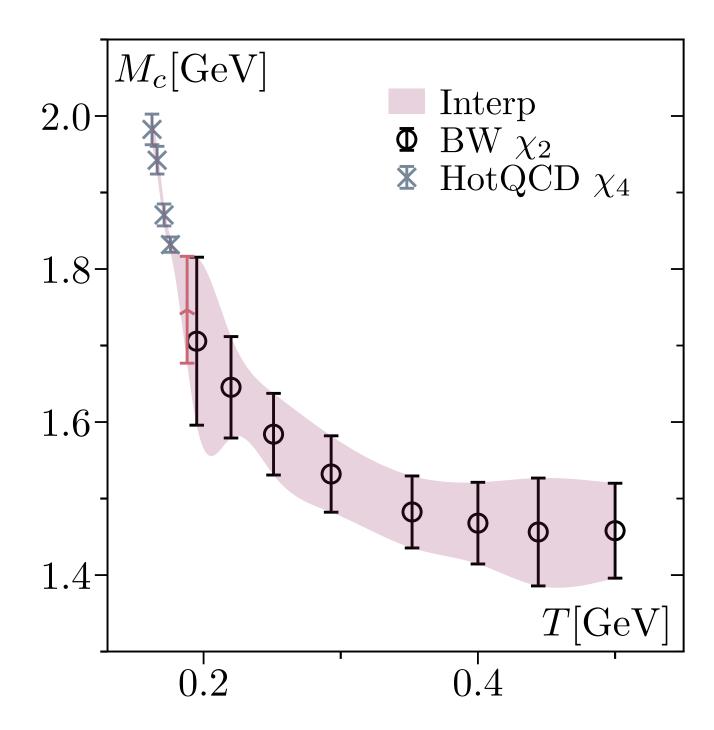


Temperature-dependent charm quark mass

For charm quarks:

We use the charm susceptibilities from the lattice.

$$\chi_n^C = \frac{\partial^n (p_C(T)/T^4)}{\partial (\mu_C/T)^n}, n = 2,4$$



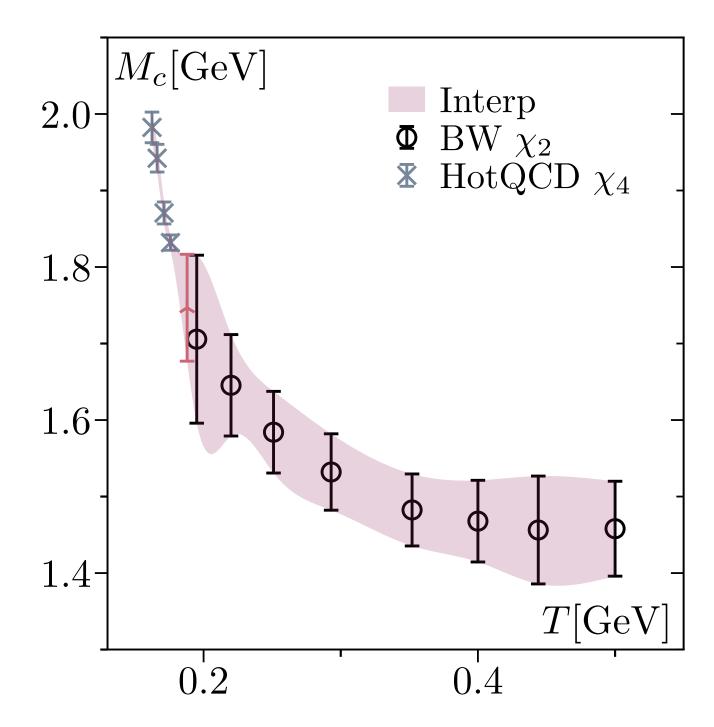
Temperature-dependent charm quark mass

For bottom quarks:

For charm quarks:

We use the charm susceptibilities from the lattice.

$$\chi_n^C = \frac{\partial^n(p_C(T)/T^4)}{\partial(\mu_C/T)^n}, n = 2,4$$



Temperature-dependent charm quark mass

For bottom quarks:

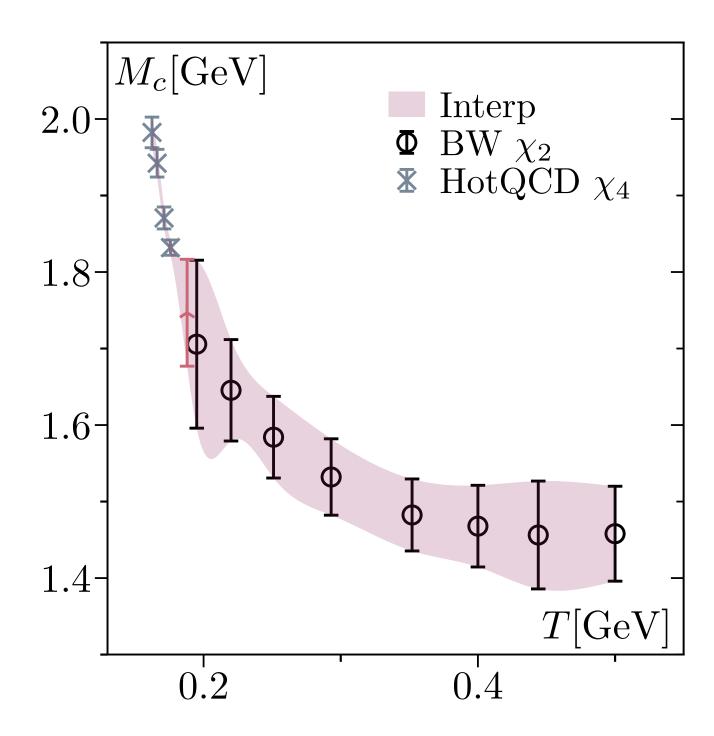
We use and HRG to reproduce the susceptibilities.

$$\chi_b(T) = p_B(T) = p_B^M(T) + p_B^B(T) + p_B^q(T)$$

For charm quarks:

We use the charm susceptibilities from the lattice.

$$\chi_n^C = \frac{\partial^n (p_C(T)/T^4)}{\partial (\mu_C/T)^n}, n = 2,4$$

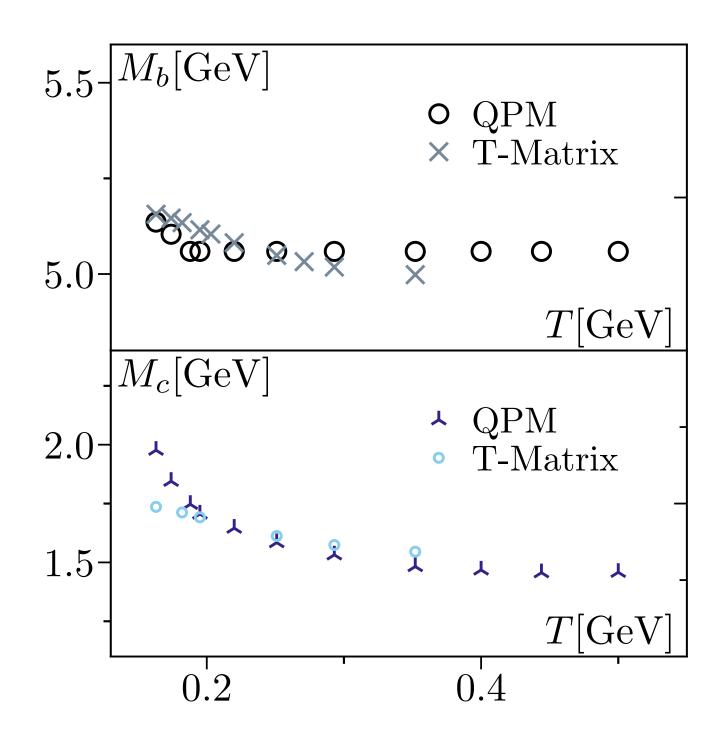


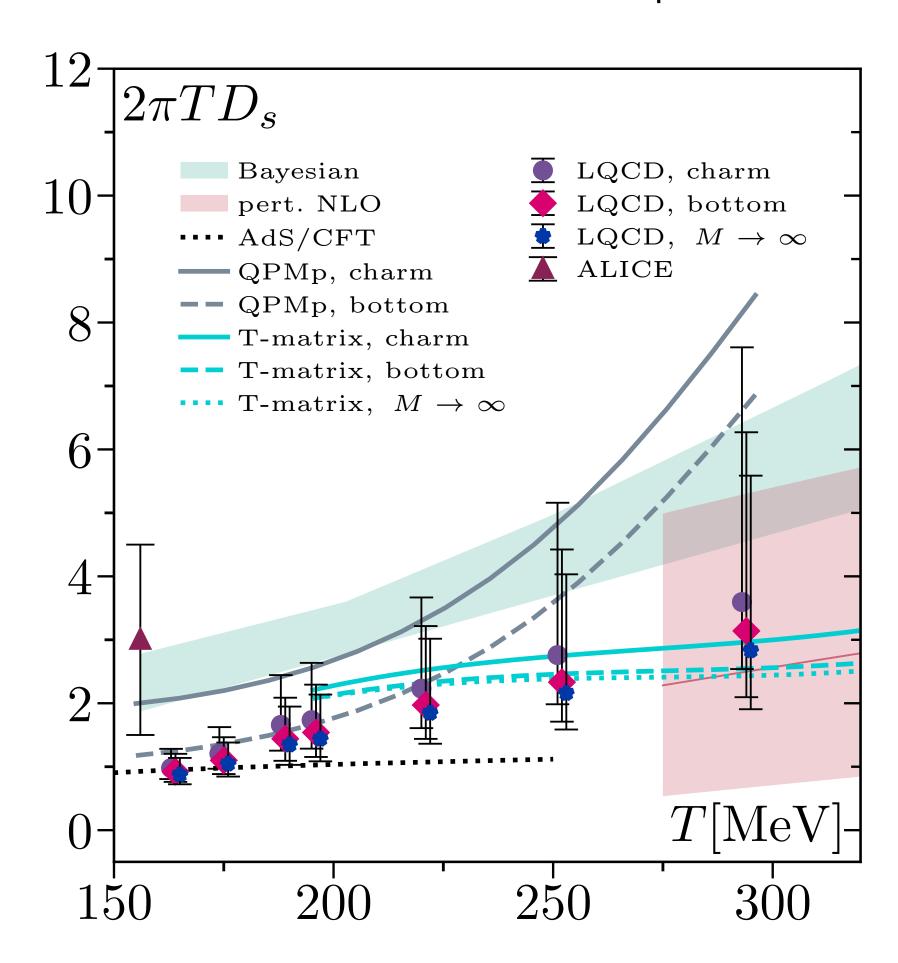
Temperature-dependent charm quark mass

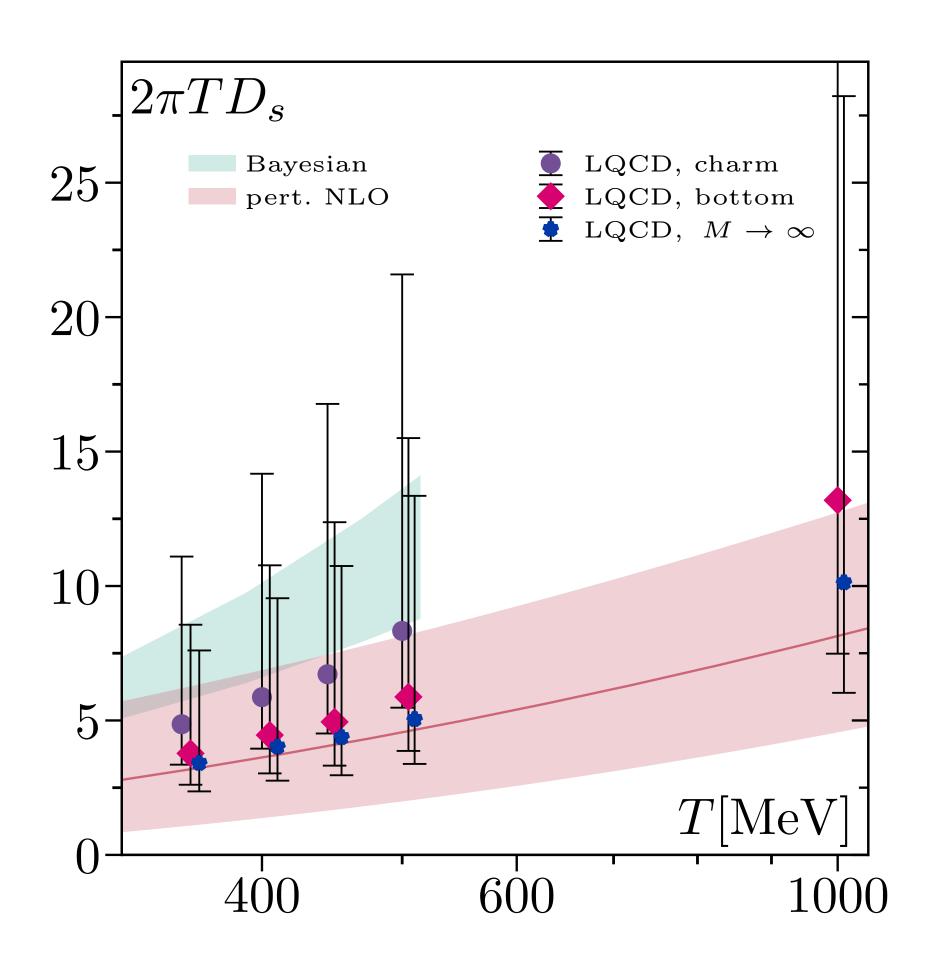
For bottom quarks:

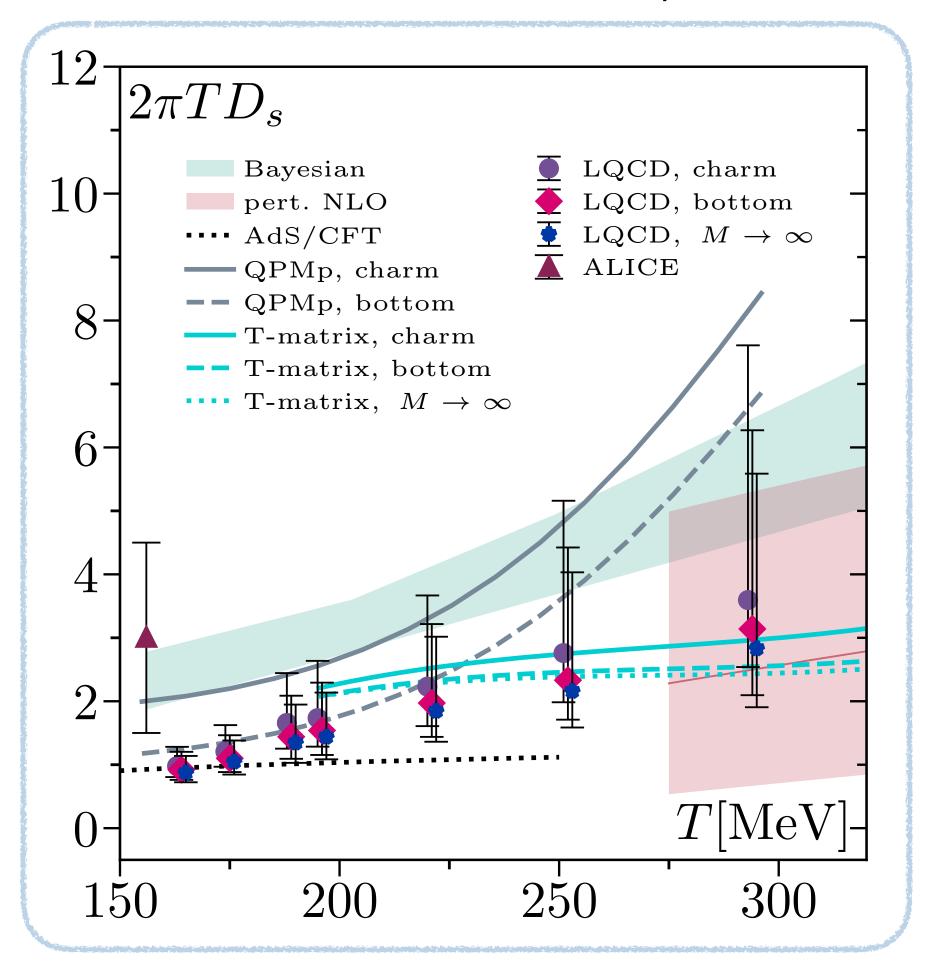
We use and HRG to reproduce the susceptibilities.

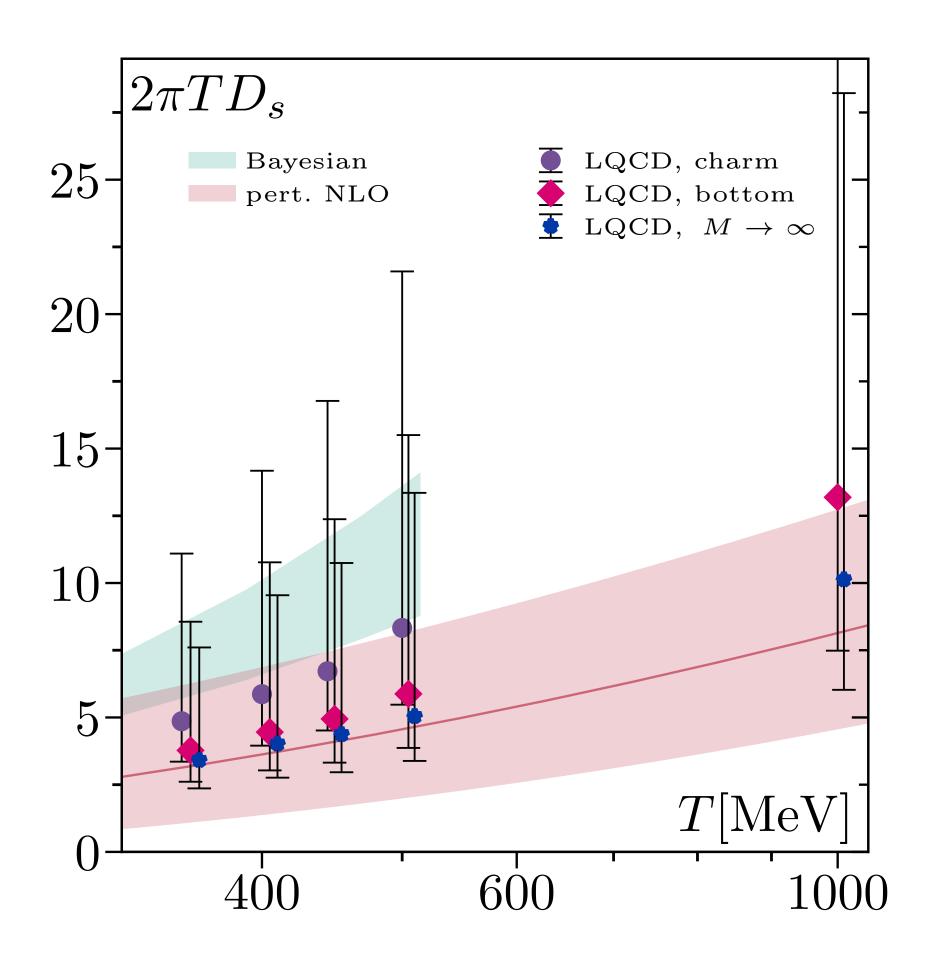
$$\chi_b(T) = p_B(T) = p_B^M(T) + p_B^B(T) + p_B^q(T)$$

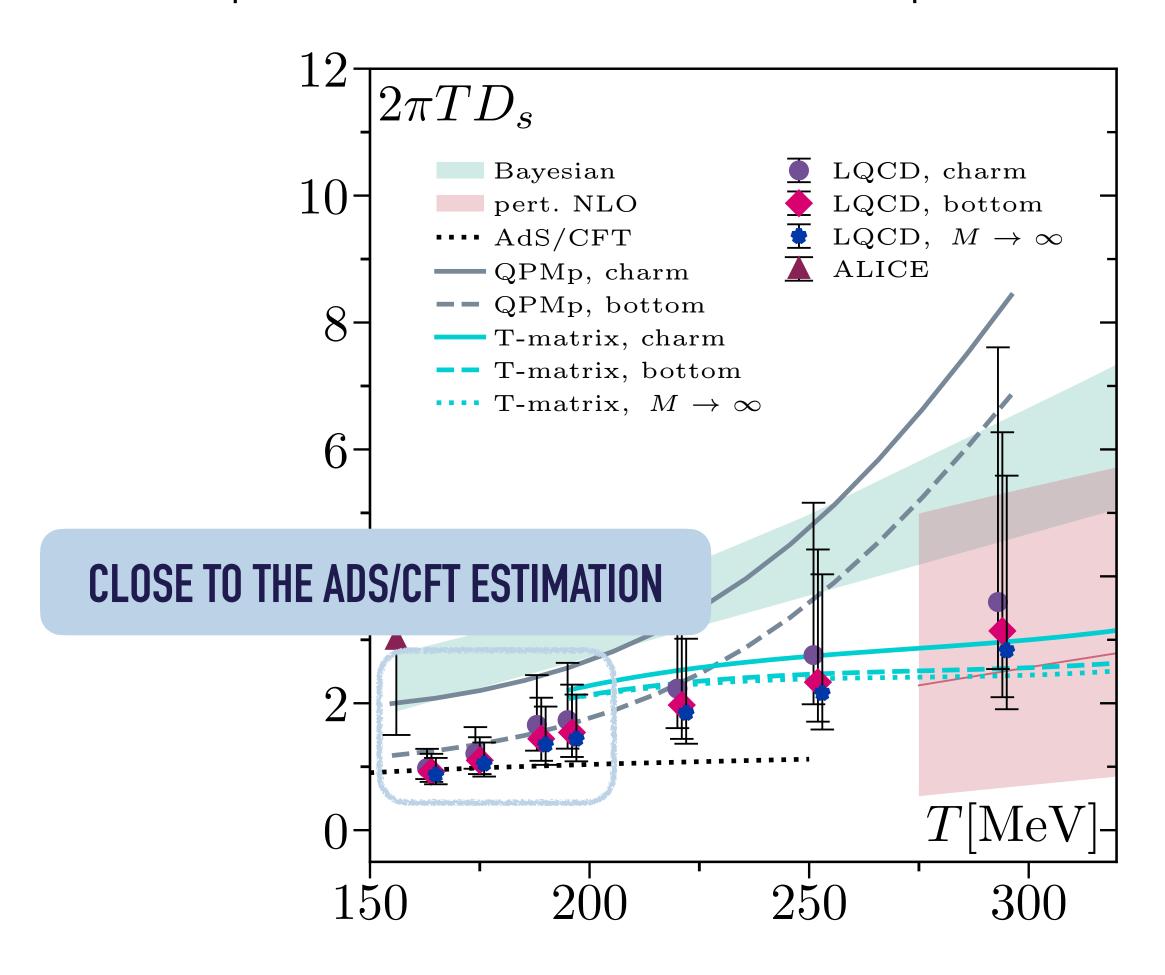


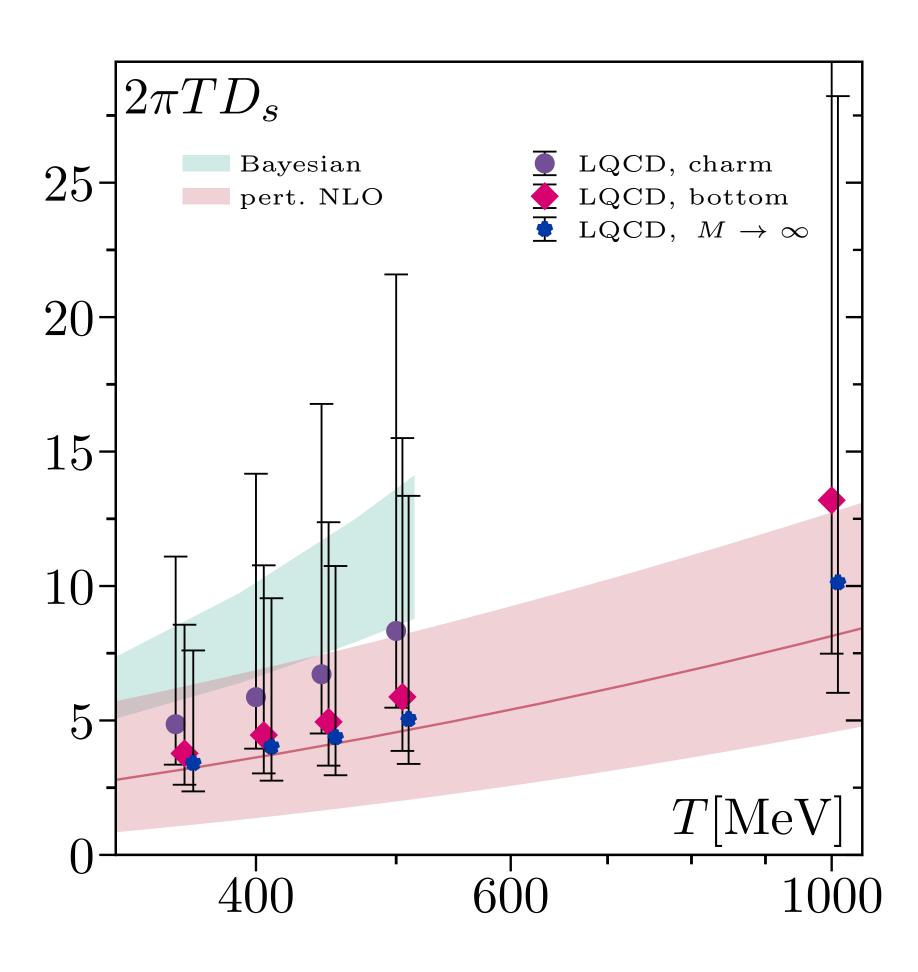


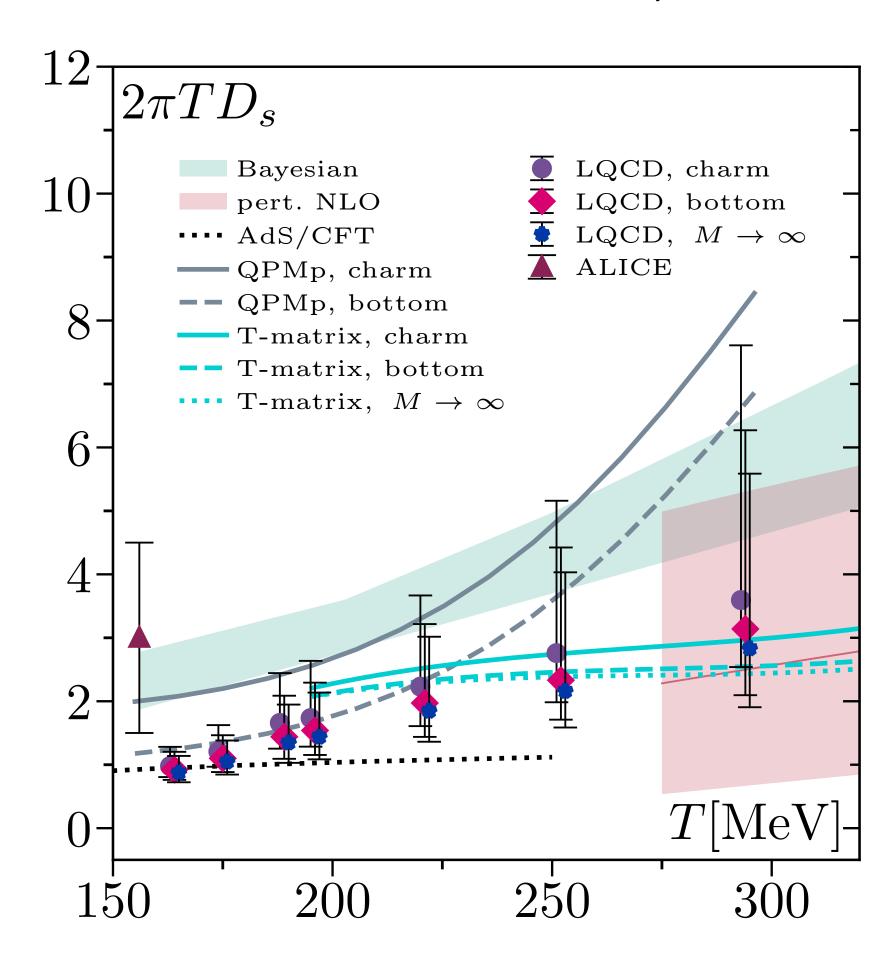


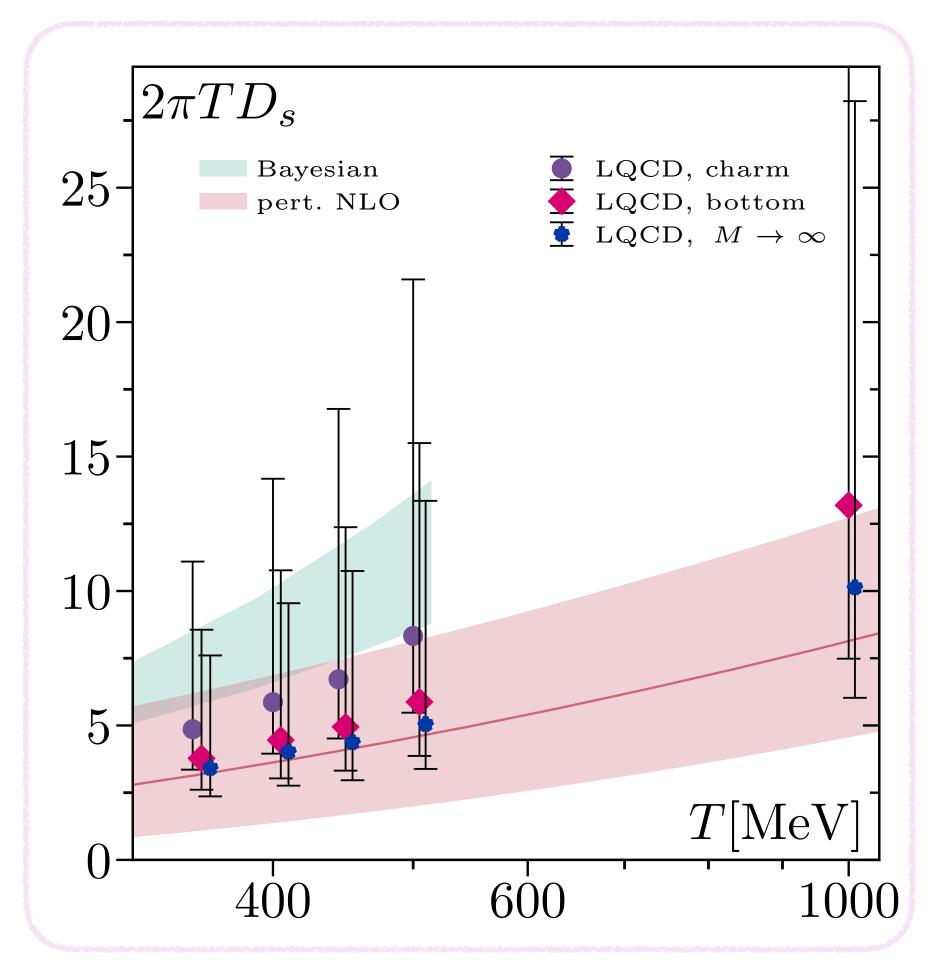


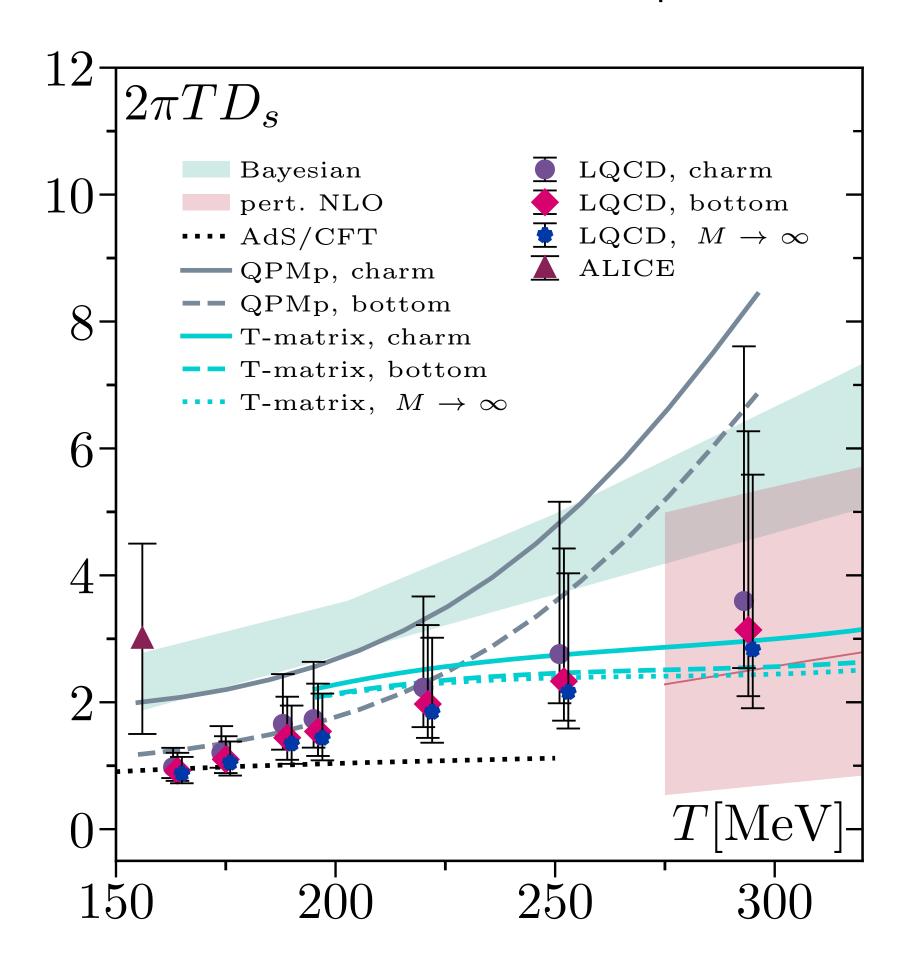


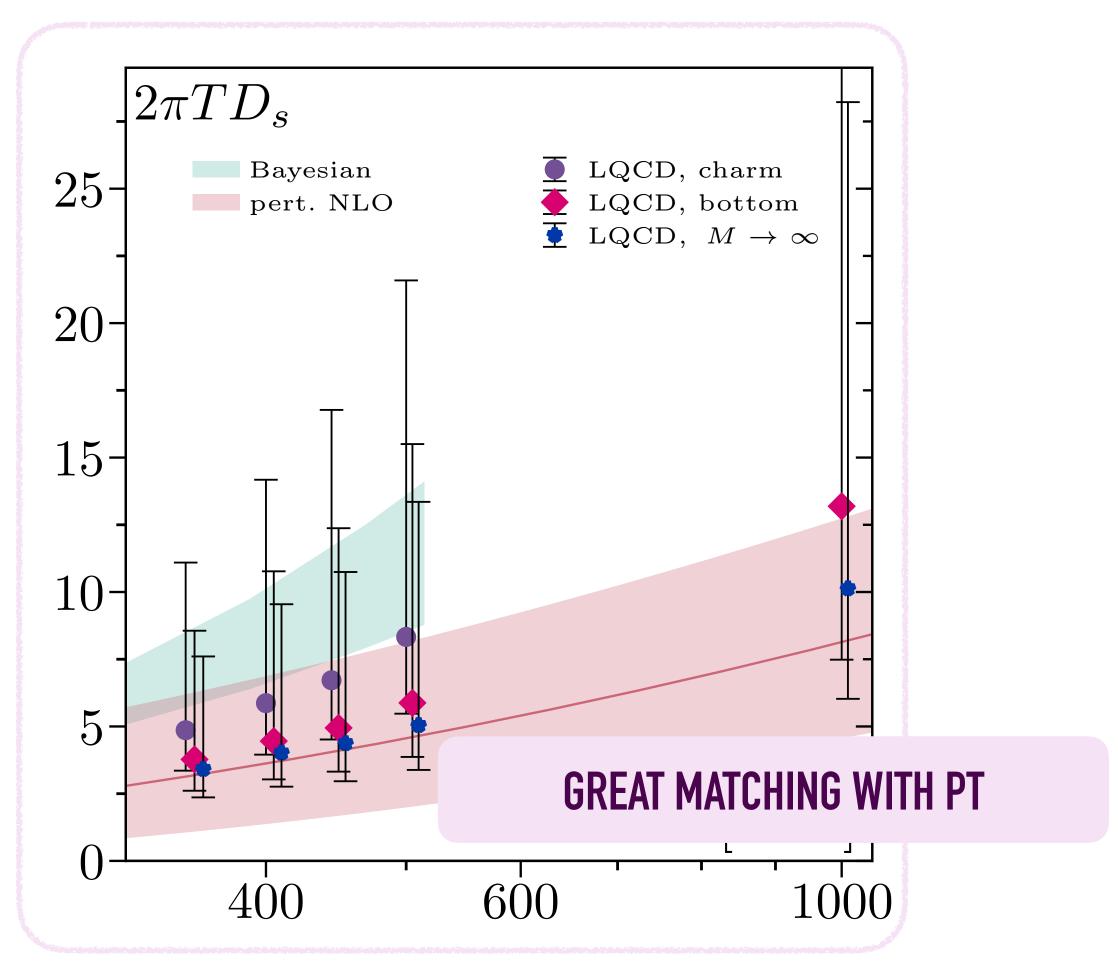












CONCLUSIONS

DIFFUSION COEFFICIENT κ and D_s for T= 153 MeV to 10 GeV

DIFFUSION COEFFICIENT κ and D_s for T= 153 MeV to 10 GeV

We used the correct high-energy behavior of the chromo-electric spectral function.

RESOLVES THE PUZZLE OF THE LARGE RESCALING FACTOR

DIFFUSION COEFFICIENT κ and D_s for T= 153 MeV to 10 GeV

We used the correct high-energy behavior of the chromo-electric spectral function.

RESOLVES THE PUZZLE OF THE LARGE RESCALING FACTOR

Our results are compatible with the NLO perturbative predictions for the static heavy quark diffusion coefficient.

WE SUCCESSFULLY REPRODUCE THE CORRELATORS AT HIGH T USING ONLY PT

DIFFUSION COEFFICIENT κ and D_s for T= 153 MeV to 10 GeV

We used the correct high-energy behavior of the chromo-electric spectral function.

RESOLVES THE PUZZLE OF THE LARGE RESCALING FACTOR

Our results are compatible with the NLO perturbative predictions for the static heavy quark diffusion coefficient.

WE SUCCESSFULLY REPRODUCE THE CORRELATORS AT HIGH T USING ONLY PT

Near $T_c \simeq 150$ MeV, the diffusion coefficient approaches the strongly coupled AdS/CFT bound.

THE QGP IS A STRONGLY COUPLED SYSTEM

DIFFUSION COEFFICIENT κ and D_s for T= 153 MeV to 10 GeV

We used the correct high-energy behavior of the chromo-electric spectral function.

RESOLVES THE PUZZLE OF THE LARGE RESCALING FACTOR

Our results are compatible with the NLO perturbative predictions for the static heavy quark diffusion coefficient.

WE SUCCESSFULLY REPRODUCE THE CORRELATORS AT HIGH T USING ONLY PT

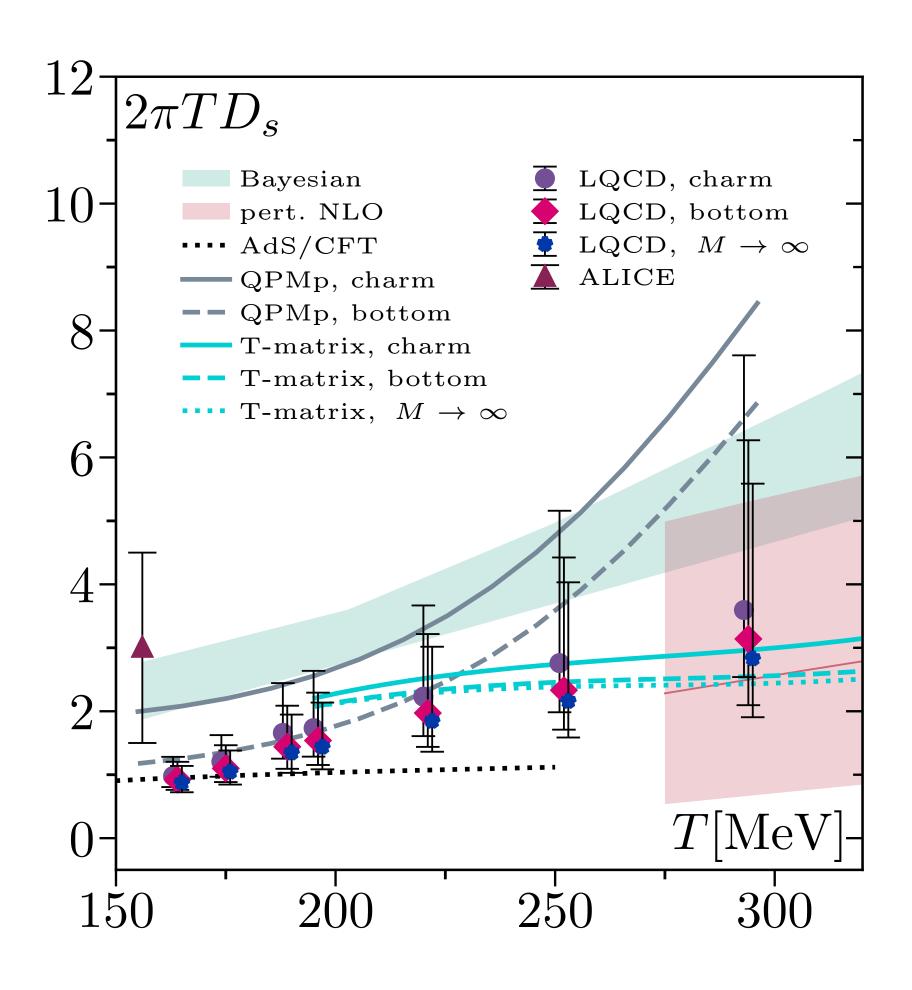
Near $T_c \simeq 150$ MeV, the diffusion coefficient approaches the strongly coupled AdS/CFT bound.

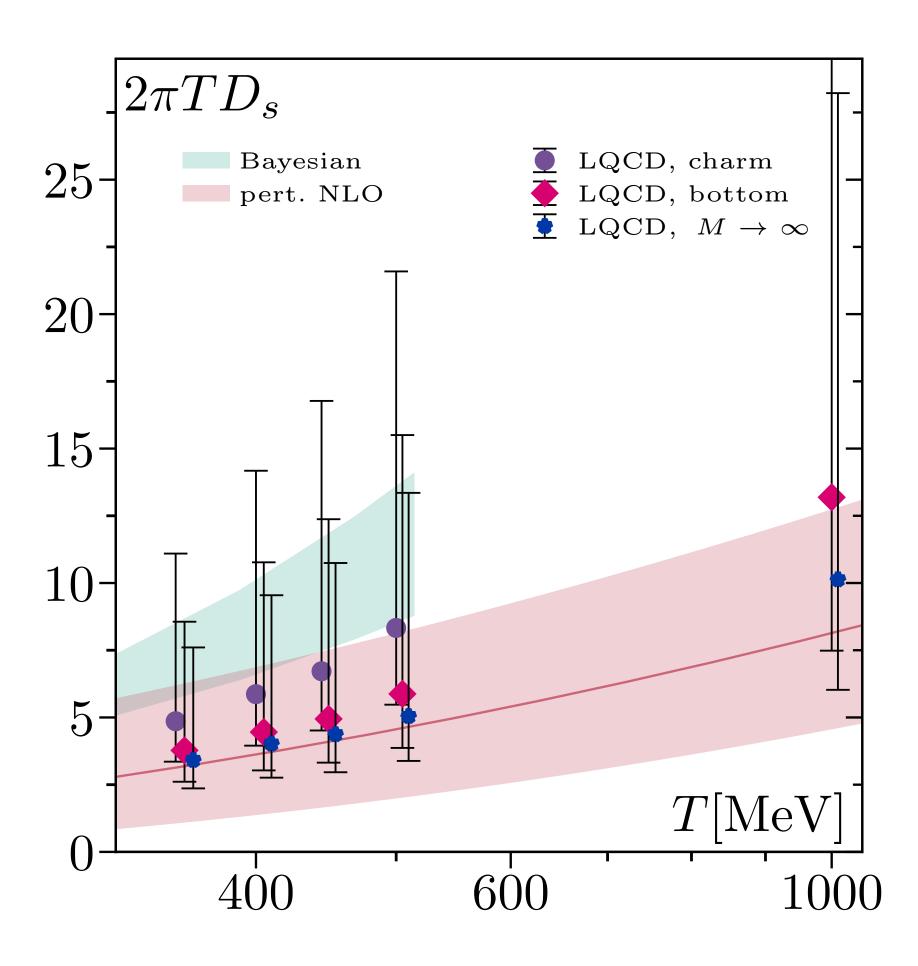
THE QGP IS A STRONGLY COUPLED SYSTEM

Our results remain systematically lower than estimates Bayesian reconstructions and data-driven determinations.

LOWER THAN THE DATA DRIVEN ESTIMATION

THANKS FOR YOUR ATTENTION





BACKUP SLIDES

LATTICE ANALYSIS

CONFIGURATIONS WITH $m_l = m_l/5$

T[Mev]	eta	<i>a</i> [fm]	$a \times m_{s}$	$a \times m_1$	N_{σ}	$N_{ au}$	configs	stream
286	8.4000	0.0247	0.008870	0.0017740	64	28	4234	16
308	8.4000	0.0247	0.008870	0.0017740	64	26	4841	16
333	8.4000	0.0247	0.008870	0.0017740	64	24	4728	4
364	8.4000	0.0247	0.008870	0.0017740	64	22	5272	4
400	8.4000	0.0247	0.008870	0.0017740	64	20	5664	4
444	8.4000	0.0247	0.008870	0.0017740	64	18	6188	4
500	8.4000	0.0247	0.008870	0.0017740	64	16	5971	4
352	8.1260	0.0247	0.000070	0.0017740	64	18	4214	12
352	8.3620	0.0311	0.009095	0.0022700	64	22	3609	16
400	8.2763	0.0233	0.009093	0.0018190	64	18	3441	16
400	8.6165	0.0205	0.007174	0.0014348	64	24	4097	24
444	8.2612	0.0278	0.010004	0.0020008	64	16	4462	16
444	8.6376	0.0202	0.007036	0.0014072	64	22	4025	16
500	8.5398	0.0219	0.007703	0.0015406	64	18	3617	16
500	8.6647	0.0197	0.006862	0.0013724	64	20	4266	24
500	8.8815	0.0164	0.005626	0.0011252	64	24	3808	24
1000	9.3653	0.0110	0.003635	0.0007270	64	18	1566	8
1000	9.4910	0.0099	0.003248	0.0006496	64	20	2047	4
1000	9.7085	0.0082	0.002675	0.0005350	64	24	1346	4
10000	12.1034	0.00110	0.0003221	0.00006442	64	18	1373	8
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4

	$oldsymbol{eta}$							
286	$\beta = 10/g_0^2$	0.0247	0.008870	0.0017740	64	28	4234	16
308	P = 10780	0.0247	0.008870	0.0017740	64	26	4841	16
333	8.4000	0.0247	0.008870	0.0017740	64	24	4728	4
364	8.4000	0.0247	0.008870	0.0017740	64	22	5272	4
400	8.4000	0.0247	0.008870	0.0017740	64	20	5664	4
444	8.4000	0.0247	0.008870	0.0017740	64	18	6188	4
500	8.4000	0.0247	0.008870	0.0017740	64	16	5971	4
352	8.1260	0.0311	0.011380	0.0022760	64	18	4214	12
352	8.3620	0.0255	0.009095	0.0018190	64	22	3609	16
400	8.2763	0.0274	0.009861	0.0019722	64	18	3441	16
400	8.6165	0.0205	0.007174	0.0014348	64	24	4097	24
444	8.2612	0.0278	0.010004	0.0020008	64	16	4462	16
444	8.6376	0.0202	0.007036	0.0014072	64	22	4025	16
500	8.5398	0.0219	0.007703	0.0015406	64	18	3617	16
500	8.6647	0.0197	0.006862	0.0013724	64	20	4266	24
500	8.8815	0.0164	0.005626	0.0011252	64	24	3808	24
1000	9.3653	0.0110	0.003635	0.0007270	64	18	1566	8
1000	9.4910	0.0099	0.003248	0.0006496	64	20	2047	4
1000	9.7085	0.0082	0.002675	0.0005350	64	24	1346	4
10000	12.1034	0.00110	0.0003221	0.00006442	64	18	1373	8
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4

		a [fm]						
286	8.4000	$\frac{1}{2}dV(r)$	0.008870	0.0017740	64	28	4234	16
308	8.4000	r ² - 0.0247	0.008870	0.0017740	64	26	4841	16
333	8.4000	$ dr_{247} _{r=r_1}$	0.008870	0.0017740	64	24	4728	4
364	8.4000	0.0247	0.008870	0.0017740	64	22	5272	4
400	8.4000	$r_1 = 0.3460 \text{fm}$	0.008870	0.0017740	64	20	5664	4
444	8.4000	0.0247	0.008870	0.0017740	64	18	6188	4
500	8.4000	0.0247	0.008870	0.0017740	64	16	5971	4
352	8.1260	0.0311	0.011380	0.0022760	64	18	4214	12
352	8.3620	0.0255	0.009095	0.0018190	64	22	3609	16
400	8.2763	0.0274	0.009861	0.0019722	64	18	3441	16
400	8.6165	0.0205	0.007174	0.0014348	64	24	4097	24
444	8.2612	0.0278	0.010004	0.0020008	64	16	4462	16
444	8.6376	0.0202	0.007036	0.0014072	64	22	4025	16
500	8.5398	0.0219	0.007703	0.0015406	64	18	3617	16
500	8.6647	0.0197	0.006862	0.0013724	64	20	4266	24
500	8.8815	0.0164	0.005626	0.0011252	64	24	3808	24
1000	9.3653	0.0110	0.003635	0.0007270	64	18	1566	8
1000	9.4910	0.0099	0.003248	0.0006496	64	20	2047	4
1000	9.7085	0.0082	0.002675	0.0005350	64	24	1346	4
10000	12.1034	0.00110	0.0003221	0.00006442	64	18	1373	8
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4

T[Mev]	eta	<i>a</i> [fm]	$a \times m_s$	$a \times m_l$	N_{σ}	$N_{ au}$	configs	stream
286	8.4000	0.0247	0.008870	0.0017740	64	28	4234	16
308	8.4000	0.0247	0.008870	0.0017740	64	26	4841	16
333	8.4000	0.0247	0.008870	0.0017740	64	24	4728	4
364	8.4000	0.0247	0.008870	0.0017740	64	22	5272	4
400	8.4000	0.0247	0.008870	0.0017740	64	20	5664	4
444	8.4000	0.0247	0.008870	0.0017740	64	18	6188	4
500	8.4000	0.0247	0.008870	0.0017740	64	16	5971	4
352	8.1260	0.0311	0.011380	0.0022760	64	18	4214	12
352	8.3620	0.0255	0.009095	0.0018190	64	22	3609	16
400	8.2763	0.0274	0.009861	0.0019722	64	18	3441	16
400	8.6165	0.0205	0.007174	0.0014348	64	24	4097	24
444	8.2612	0.0278	0.010004	0.0020008	64	16	4462	16
444	8.6376	0.0202	0.007036	0.0014072	64	22	4025	16
500	8.5398	0.0219	0.007703	0.0015406	64	18	3617	16
500	8.6647	0.0197	0.006862	0.0013724	64	20	4266	24
500	8.8815	0.0164	0.005626	0.0011252	64	24	3808	24
1000	9.3653	0.0110	0.003635	0.0007270	64	18	1566	8
1000	9.4910	0.0099	0.003248	0.0006496	64	20	2047	4
1000	9.7085	0.0082	0.002675	0.0005350	64	24	1346	4
10000	12.1034	0.00110	0.0003221	0.00006442	64	18	1373	8
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4

T[Mev]	$oldsymbol{eta}$	<i>a</i> [fm]	$a \times m_s$	$a \times m_l$	N_{σ}	$N_{ au}$	configs	stream
286	8.4000	0.0247	0.008870	0.0017740	64	28	4234	16
308	8.4000	0.0247	0.008870	0.0017740	64	26	4841	16
333	8.4000	0.0247	0.008870	0.0017740	64	24	4728	4
364	8.4000	0.0247	0.008870	0.0017740	64	22	5272	4
400	8.4000	0.0247	0.008870	0.0017740	64	20	5664	4
444	8.4000	0.0247	0.008870	0.0017740	64	18	6188	4
500	8.4000	0.0247	0.008870	0.0017740	64	16	5971	4
352	8.1260	0.0311	0.011380	0.0022760	64	18	4214	12
352	8.3620	0.0255	0.009095	0.0018190	64	22	3609	16
400	8.2763	0.0274	0.009861	0.0019722	64	18	3441	16
400	8.6165	0.0205	0.007174	0.0014348	64	24	4097	24
444	8.2612	0.0278	0.010004	0.0020008	64	16	4462	16
444	8.6376	0.0202	0.007036	0.0014072	64	22	4025	16
500	8.5398	0.0219	0.007703	0.0015406	64	18	3617	16
500	8.6647	0.0197	0.006862	0.0013724	64	20	4266	24
500	8.8815	0.0164	0.005626	0.0011252	64	24	3808	24
1000	9.3653	0.0110	0.003635	0.0007270	64	18	1566	8
1000	9.4910	0.0099	0.003248	0.0006496	64	20	2047	4
1000	9.7085	0.0082	0.002675	0.0005350	64	24	1346	4
10000	12.1034	0.00110	0.0003221	0.00006442	64	18	1373	8
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4

T[Mev]	$oldsymbol{eta}$	<i>a</i> [fm]	$a \times m_s$	$a \times m_l$	N_{σ}	$N_{ au}$	configs	stream
286	8.4000	0.0247	0.008870	0.0017740	64	28	4234	16
308	8.4000	0.0247	0.008870	0.0017740	64	26	4841	16
333	8.4000	0.0247	0.008870	0.0017740	64	24	4728	4
364	8.4000	0.0247	0.008870	0.0017740	64	22	5272	4
400	8.4000	0.0247	0.008870	0.0017740	64	20	5664	4
444	8.4000	0.0247	0.008870	0.0017740	64	18	6188	4
500	8.4000	0.0247	0.008870	0.0017740	64	16	5971	4
352	8.1260	0.0311	0.011380	0.0022760	64	18	4214	12
352	8.3620	0.0255	0.009095	0.0018190	64	22	3609	16
400	8.2763	0.0274	0.009861	0.0019722	64	18	3441	16
400	8.6165	0.0205	0.007174	0.0014348	64	24	4097	24
444	8.2612	0.0278	0.010004	0.0020008	64	16	4462	16
444	8.6376	0.0202	0.007036	0.0014072	64	22	4025	16
500	8.5398	0.0219	0.007703	0.0015406	64	18	3617	16
500	8.6647	0.0197	0.006862	0.0013724	64	20	4266	24
500	8.8815	0.0164	0.005626	0.0011252	64	24	3808	24
1000	9.3653	0.0110	0.003635	0.0007270	64	18	1566	8
1000	9.4910	0.0099	0.003248	0.0006496	64	20	2047	4
1000	9.7085	0.0082	0.002675	0.0005350	64	24	1346	4
10000	12.1034	0.00110	0.0003221	0.00006442	64	18	1373	8
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4

T[Mev]	$oldsymbol{eta}$	<i>a</i> [fm]	$a \times m_s$	$a \times m_l$	N_{σ}	$N_{ au}$	configs	stream
286	8.4000	0.0247	0.008870	0.0017740	64	28	4234	16
308	8.4000	0.0247	0.008870	0.0017740	64	26	4841	16
333	8.4000	0.0247	0.008870	0.0017740	64	24	4728	4
364	8.4000	0.0247	0.008870	0.0017740	64	22	5272	4
400	8.4000	0.0247	0.008870	0.0017740	64	20	5664	4
444	8.4000	0.0247	0.008870	0.0017740	64	18	6188	4
500	8.4000	0.0247	0.008870	0.0017740	64	16	5971	4
352	8.1260	0.0311	0.011380	0.0022760	64	18	4214	12
352	8.3620	0.0255	0.009095	0.0018190	64	22	3609	16
400	8.2763	0.0274	0.009861	0.0019722	64	18	3441	16
400	8.6165	0.0205	0.007174	0.0014348	64	24	4097	24
444	8.2612	0.0278	0.010004	0.0020008	64	16	4462	16
444	8.6376	0.0202	0.007036	0.0014072	64	22	4025	16
500	8.5398	0.0219	0.007703	0.0015406	64	18	3617	16
500	8.6647	0.0197	0.006862	0.0013724	64	20	4266	24
500	8.8815	0.0164	0.005626	0.0011252	64	24	3808	24
1000	9.3653	0.0110	0.003635	0.0007270	64	18	1566	8
1000	9.4910	0.0099	0.003248	0.0006496	64	20	2047	4
1000	9.7085	0.0082	0.002675	0.0005350	64	24	1346	4
10000	12.1034	0.00110	0.0003221	0.00006442	64	18	1373	8
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4

T[Mev]	$oldsymbol{eta}$	<i>a</i> [fm]	$a \times m_s$	$a \times m_l$	N_{σ}	$N_{ au}$	configs	stream
286	8.4000	0.0247	0.008870	0.0017740	64	28	4234	16
308	8.4000	0.0247	0.008870	0.0017740	64	26	4841	16
333	8.4000	0.0247	0.008870	0.0017740	64	24	4728	4
364	8.4000	0.0247	0.008870	0.0017740	64	22	5272	4
400	8.4000	0.0247	0.008870	0.0017740	64	20	5664	4
444	8.4000	0.0247	0.008870	0.0017740	64	18	6188	4
500	8.4000	0.0247	0.008870	0.0017740	64	16	5971	4
352	8.1260	0.0311	0.011380	0.0022760	64	18	4214	12
352	8.3620	0.0255	0.009095	0.0018190	64	22	3609	16
400	8.2763	0.0274	0.009861	0.0019722	64	18	3441	16
400	8.6165	0.0205	0.007174	0.0014348	64	24	4097	24
444	8.2612	0.0278	0.010004	0.0020008	64	16	4462	16
444	8.6376	0.0202	0.007036	0.0014072	64	22	4025	16
500	8.5398	0.0219	0.007703	0.0015406	64	18	3617	16
500	8.6647	0.0197	0.006862	0.0013724	64	20	4266	24
500	8.8815	0.0164	0.005626	0.0011252	64	24	3808	24
1000	9.3653	0.0110	0.003635	0.0007270	64	18	1566	8
1000	9.4910	0.0099	0.003248	0.0006496	64	20	2047	4
1000	9.7085	0.0082	0.002675	0.0005350	64	24	1346	4
10000	12.1034	0.00110	0.0003221	0.00006442	64	18	1373	8
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4

T[Mev]	eta	<i>a</i> [fm]	$a \times m_s$	$a \times m_l$	N_{σ}	$N_{ au}$	configs	stream
286	8.4000	0.0247	0.008870	0.0017740	64	28	4234	16
308	8.4000	0.0247	0.008870	0.0017740	64	26	4841	16
333	8.4000	0.0247	0.008870	0.0017740	64	24	4728	4
364	8.4000	0.0247	0.008870	0.0017740	64	22	5272	4
400	8.4000	0.0247	0.008870	0.0017740	64	20	5664	4
444	8.4000	0.0247	0.008870	0.0017740	64	18	6188	4
500	8.4000	0.0247	0.008870	0.0017740	64	16	5971	4
352	8.1260	0.0311	0.011380	0.0022760	64	18	4214	12
352	8.3620	0.0255	0.009095	0.0018190	64	22	3609	16
400	8.2763	0.0274	0.009861	0.0019722	64	18	3441	16
400	8.6165	0.0205	0.007174	0.0014348	64	24	4097	24
444	8.2612	0.0278	0.010004	0.0020008	64	16	4462	16
444	8.6376	0.0202	0.007036	0.0014072	64	22	4025	16
500	8.5398	0.0219	0.007703	0.0015406	64	18	3617	16
500	8.6647	0.0197	0.006862	0.0013724	64	20	4266	24
500	8.8815	0.0164	0.005626	0.0011252	64	24	3808	24
1000	9.3653	0.0110	0.003635	0.0007270	64	18	1566	8
1000	9.4910	0.0099	0.003248	0.0006496	64	20	2047	4
1000	9.7085	0.0082	0.002675	0.0005350	64	24	1346	4
10000	12.1034	0.00110	0.0003221	0.00006442	64	18	1373	8
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4
10000	12.2281	0.00099	0.0028855	0.00005771	64	20	1479	4

CONFIGURATIONS WITH $m_l = m_l/20$

T[Mev]	eta	<i>a</i> [fm]	$a \times m_s$	$a \times m_1$	N_{σ}	$N_{ au}$	configs	stream
137	7.3730	0.0602	0.02500	0.00125	64	24	2273	4
149	7.3730	0.0602	0.02500	0.00125	64	22	4663	35
164	7.3730	0.0602	0.02500	0.00125	64	20	7424	36
182	7.3730	0.0602	0.02500	0.00125	64	18	6245	37
205	7.3730	0.0602	0.02500	0.00125	64	16	4785	4
133	7.5960	0.0493	0.02020	0.00101	64	30	1683	4
143	7.5960	0.0493	0.02020	0.00101	64	28	2036	4
154	7.5960	0.0493	0.02020	0.00101	64	26	9162	47
167	7.5960	0.0493	0.02020	0.00101	64	24	6669	37
182	7.5960	0.0493	0.02020	0.00101	64	22	7115	37
200	7.5960	0.0493	0.02020	0.00101	64	20	3017	4
222	7.5960	0.0493	0.02020	0.00101	64	18	4952	8
250	7.5960	0.0493	0.02020	0.00101	64	16	7130	9
153	7.8250	0.0404	0.01640	0.00082	64	32	2574	8
163	7.8250	0.0404	0.01640	0.00082	64	30	4757	24
174	7.8250	0.0404	0.01640	0.00082	64	28	14128	49
188	7.8250	0.0404	0.01640	0.00082	64	26	13911	48
204	7.8250	0.0404	0.01640	0.00082	64	24	4555	7
222	7.8250	0.0404	0.01640	0.00082	64	22	5109	7
244	7.8250	0.0404	0.01640	0.00082	64	20	4433	4
271	7.8250	0.0404	0.01640	0.00082	64	18	5340	4
305	7.8250	0.0404	0.01640	0.00082	64	16	6238	4

T[Mev]	β	a [fm]	$a \times m_s$	$a \times m_l$	N_{σ}	$N_{ au}$	configs	stream
137	7.3730	0.0602	0.02500	0.00125	64	24	2273	4
149	7.3730	0.0602	0.02500	0.00125	64	22	4663	35
164	7.3730	0.0602	0.02500	0.00125	64	20	7424	36
182	7.3730	0.0602	0.02500	0.00125	64	18	6245	37
205	7.3730	0.0602	0.02500	0.00125	64	16	4785	4
133	7.5960	0.0493	0.02020	0.00101	64	30	1683	4
143	7.5960	0.0493	0.02020	0.00101	64	28	2036	4
154	7.5960	0.0493	0.02020	0.00101	64	26	9162	47
167	7.5960	0.0493	0.02020	0.00101	64	24	6669	37
182	7.5960	0.0493	0.02020	0.00101	64	22	7115	37
200	7.5960	0.0493	0.02020	0.00101	64	20	3017	4
222	7.5960	0.0493	0.02020	0.00101	64	18	4952	8
250	7.5960	0.0493	0.02020	0.00101	64	16	7130	9
153	7.8250	0.0404	0.01640	0.00082	64	32	2574	8
163	7.8250	0.0404	0.01640	0.00082	64	30	4757	24
174	7.8250	0.0404	0.01640	0.00082	64	28	14128	49
188	7.8250	0.0404	0.01640	0.00082	64	26	13911	48
204	7.8250	0.0404	0.01640	0.00082	64	24	4555	7
222	7.8250	0.0404	0.01640	0.00082	64	22	5109	7
244	7.8250	0.0404	0.01640	0.00082	64	20	4433	4
271	7.8250	0.0404	0.01640	0.00082	64	18	5340	4
305	7.8250	0.0404	0.01640	0.00082	64	16	6238	4

T[Mev]	$oldsymbol{eta}$	<i>a</i> [fm]	$a \times m_{s}$	$a \times m_l$	N_{σ}	$N_{ au}$	configs	stream
137	7.3730	0.0602	0.02500	0.00125	64	24	2273	4
149	7.3730	0.0602	0.02500	0.00125	64	22	4663	35
164	7.3730	0.0602	0.02500	0.00125	64	20	7424	36
182	7.3730	0.0602	0.02500	0.00125	64	18	6245	37
205	7.3730	0.0602	0.02500	0.00125	64	16	4785	4
133	7.5960	0.0493	0.02020	0.00101	64	30	1683	4
143	7.5960	0.0493	0.02020	0.00101	64	28	2036	4
154	7.5960	0.0493	0.02020	0.00101	64	26	9162	47
167	7.5960	0.0493	0.02020	0.00101	64	24	6669	37
182	7.5960	0.0493	0.02020	0.00101	64	22	7115	37
200	7.5960	0.0493	0.02020	0.00101	64	20	3017	4
222	7.5960	0.0493	0.02020	0.00101	64	18	4952	8
250	7.5960	0.0493	0.02020	0.00101	64	16	7130	9
153	7.8250	0.0404	0.01640	0.00082	64	32	2574	8
163	7.8250	0.0404	0.01640	0.00082	64	30	4757	24
174	7.8250	0.0404	0.01640	0.00082	64	28	14128	49
188	7.8250	0.0404	0.01640	0.00082	64	26	13911	48
204	7.8250	0.0404	0.01640	0.00082	64	24	4555	7
222	7.8250	0.0404	0.01640	0.00082	64	22	5109	7
244	7.8250	0.0404	0.01640	0.00082	64	20	4433	4
271	7.8250	0.0404	0.01640	0.00082	64	18	5340	4
305	7.8250	0.0404	0.01640	0.00082	64	16	6238	4

T[Mev]	$oldsymbol{eta}$	<i>a</i> [fm]	$a \times m_s$	$a \times m_l$	N_{σ}	$N_{ au}$	configs	stream
137	7.3730	0.0602	0.02500	0.00125	64	24	2273	4
149	7.3730	0.0602	0.02500	0.00125	64	22	4663	35
164	7.3730	0.0602	0.02500	0.00125	64	20	7424	36
182	7.3730	0.0602	0.02500	0.00125	64	18	6245	37
205	7.3730	0.0602	0.02500	0.00125	64	16	4785	4
133	7.5960	0.0493	0.02020	0.00101	64	30	1683	4
143	7.5960	0.0493	0.02020	0.00101	64	28	2036	4
154	7.5960	0.0493	0.02020	0.00101	64	26	9162	47
167	7.5960	0.0493	0.02020	0.00101	64	24	6669	37
182	7.5960	0.0493	0.02020	0.00101	64	22	7115	37
200	7.5960	0.0493	0.02020	0.00101	64	20	3017	4
222	7.5960	0.0493	0.02020	0.00101	64	18	4952	8
250	7.5960	0.0493	0.02020	0.00101	64	16	7130	9
153	7.8250	0.0404	0.01640	0.00082	64	32	2574	8
163	7.8250	0.0404	0.01640	0.00082	64	30	4757	24
174	7.8250	0.0404	0.01640	0.00082	64	28	14128	49
188	7.8250	0.0404	0.01640	0.00082	64	26	13911	48
204	7.8250	0.0404	0.01640	0.00082	64	24	4555	7
222	7.8250	0.0404	0.01640	0.00082	64	22	5109	7
244	7.8250	0.0404	0.01640	0.00082	64	20	4433	4
271	7.8250	0.0404	0.01640	0.00082	64	18	5340	4
305	7.8250	0.0404	0.01640	0.00082	64	16	6238	4

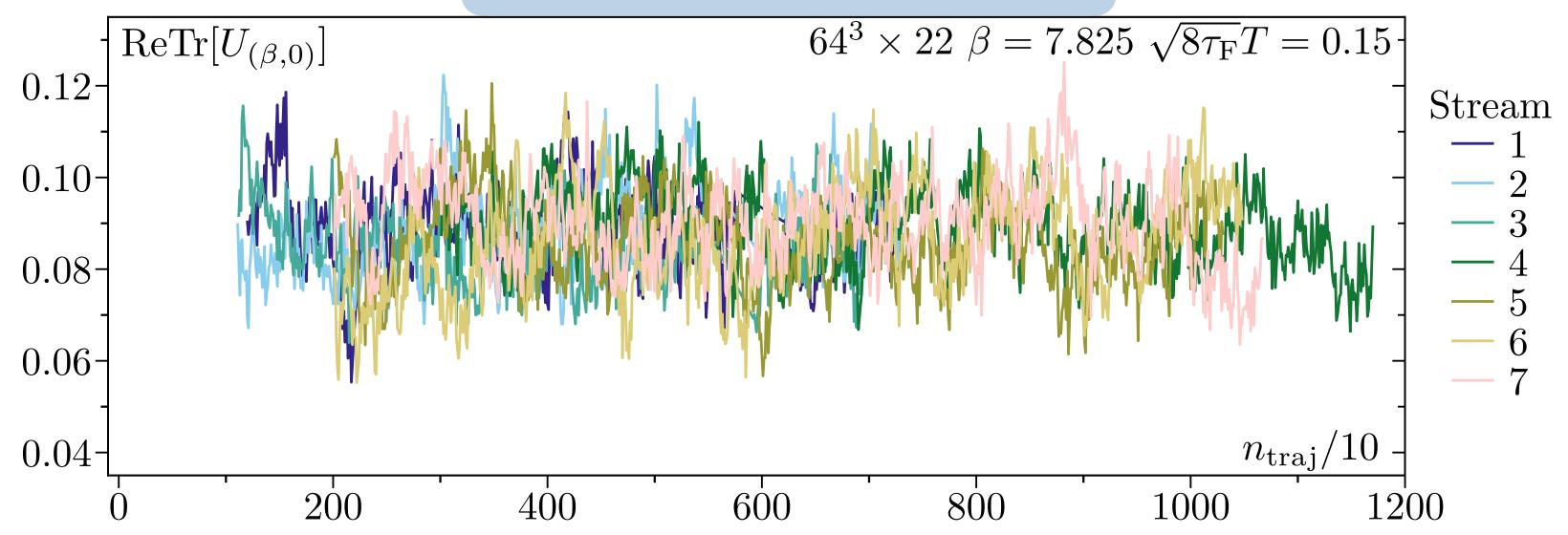
NUMERICAL SETUP

T[Mev]	β	a [fm]	$a \times m_{s}$	$a \times m_l$	N_{σ}	$N_{ au}$	configs	stream
195	7.5700	0.0505	0.019730	0.0039460	64	20	5911	12
195	7.7770	0.0421	0.016010	0.0032020	64	24	5480	4
220	7.7040	0.0449	0.017230	0.0034460	64	20	7933	12
220	7.9130	0.0374	0.014000	0.0028000	64	24	5754	4
251	7.8570	0.0393	0.014790	0.0029580	64	20	9443	4
251	8.0680	0.0327	0.012040	0.0024080	64	24	5336	12
293	8.0360	0.0336	0.012410	0.0024820	64	20	9287	4
293	8.1470	0.0306	0.011150	0.0022300	64	22	9105	12
352	8.2490	0.0280	0.010110	0.0020220	96	20	6167	4

PERVIOUSLY GENERATED BY HOTQCD COLLABORATION

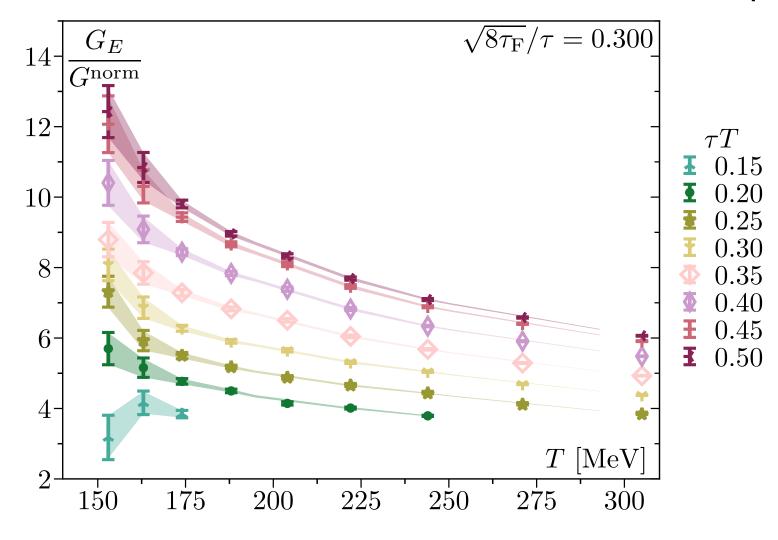
HotQCD

195	7.5700	0.0505	0.019730	0.0039460	64	20	5911	12
195	7.7770	0.0421	0.016010	0.0032020	64	24	5480	4
220	7.7040	0.0449	0.017230	0.0034460	64	20	7933	12
220	7.9130	0.0374	0.014000	0.0028000	64	24	5754	4
251	7.8570	0.0393	0.014790	0.0029580	64	20	9443	4
251	8.0680	0.0327	0.012040	0.0024080	64	24	5336	12
293	8.0360	0.0336	0.012410	0.0024820	64	20	9287	4
293	8.1470	0.0306	0.011150	0.0022300	64	22	9105	12
352	8.2490	0.0280	0.010110	0.0020220	96	20	6167	4



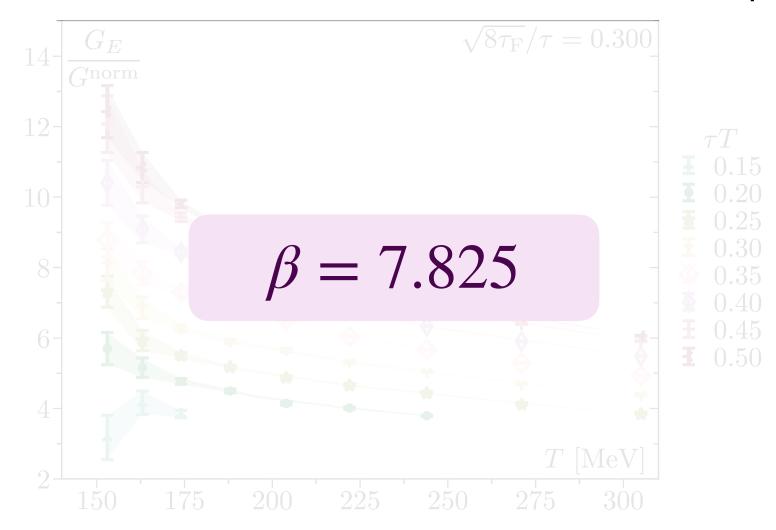
Our data is, in general, not obtained at a fixed temperature, so we need to interpolate the correlators also in T.

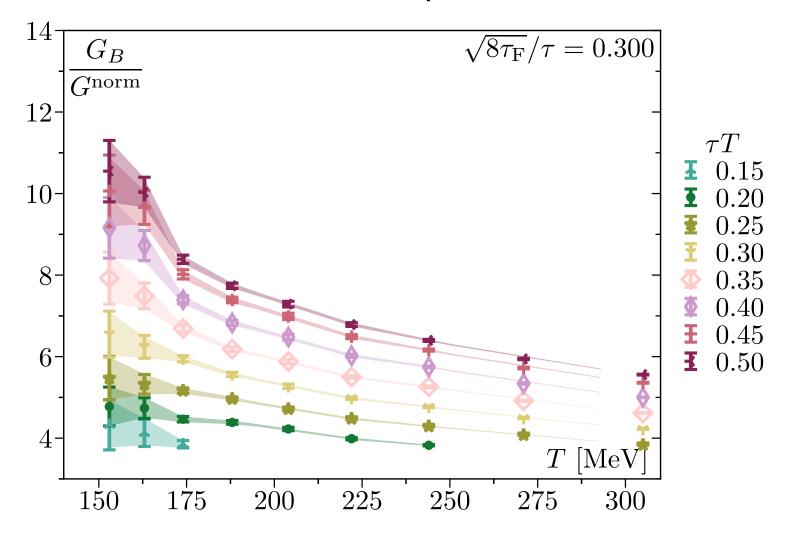
Our data is, in general, not obtained at a fixed temperature, so we need to interpolate the correlators also in T.



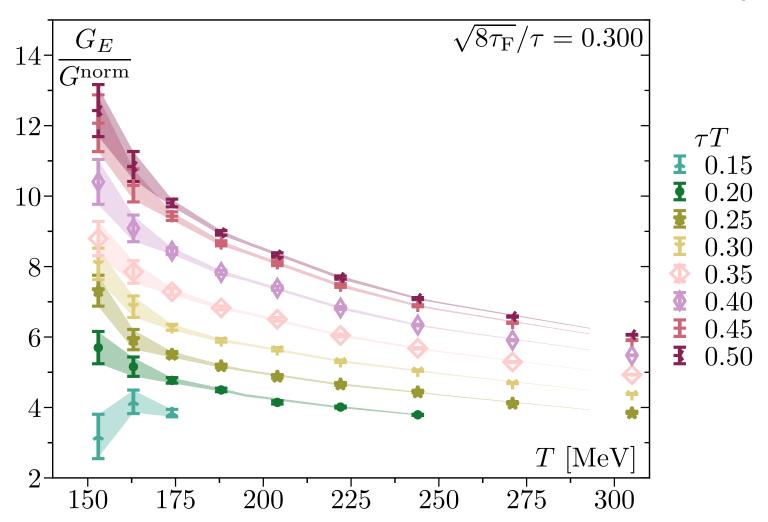
$$\beta = 7.825$$

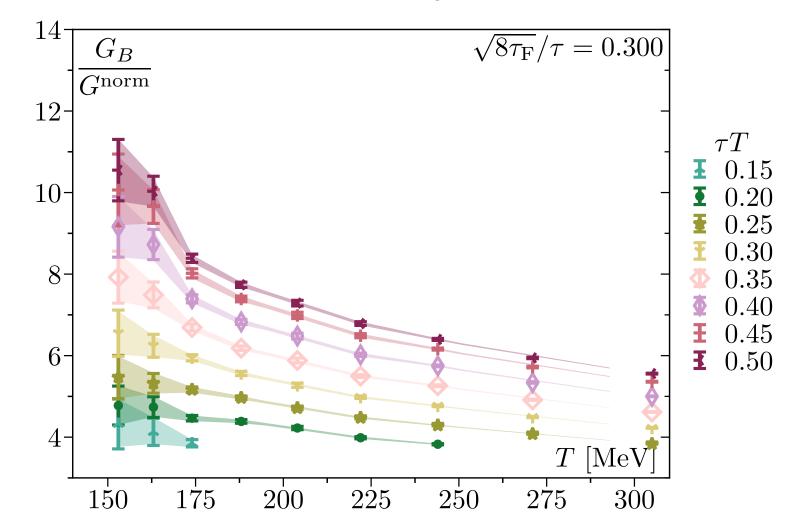
Our data is, in general, not obtained at a fixed temperature, so we need to interpolate the correlators also in T.





Our data is, in general, not obtained at a fixed temperature, so we need to interpolate the correlators also in T.

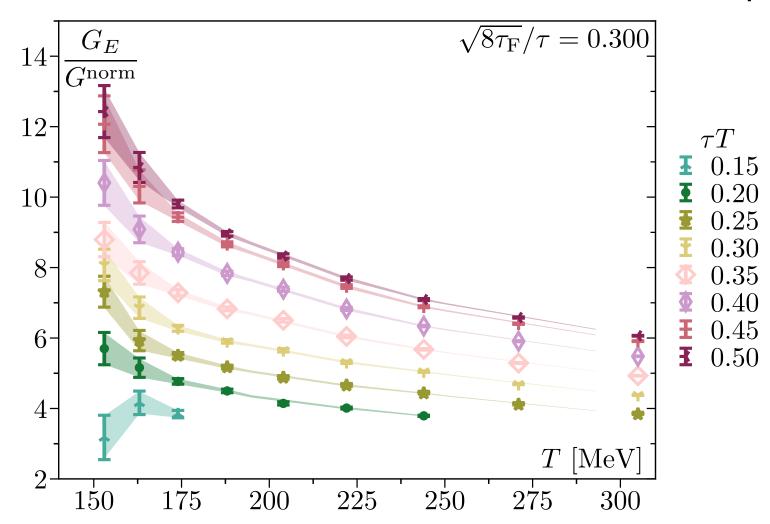


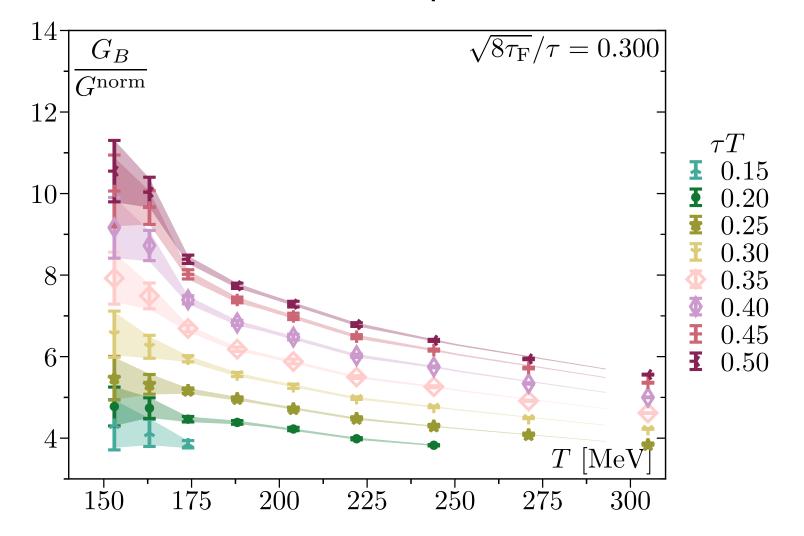


We target the following temperatures:

T = 153, 163, 174, 188, 195, 204, 220, 244, 251, 293, 352, 400, 444, 500, 1000, and 10000 MeV.

Our data is, in general, not obtained at a fixed temperature, so we need to interpolate the correlators also in T.



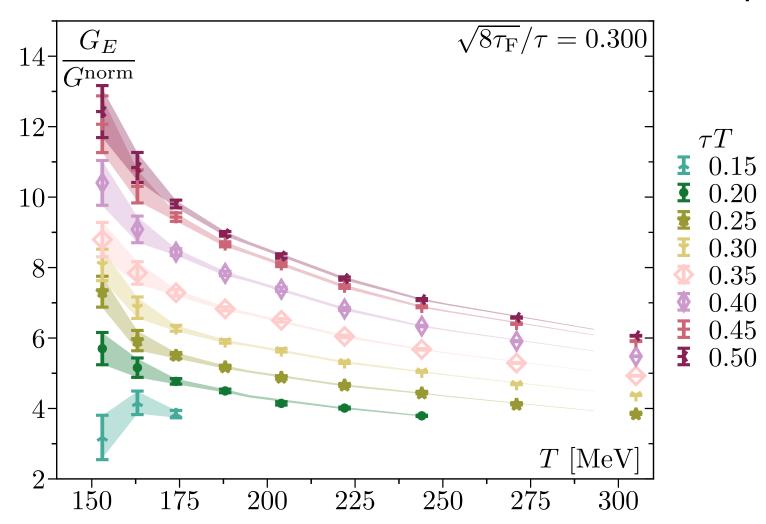


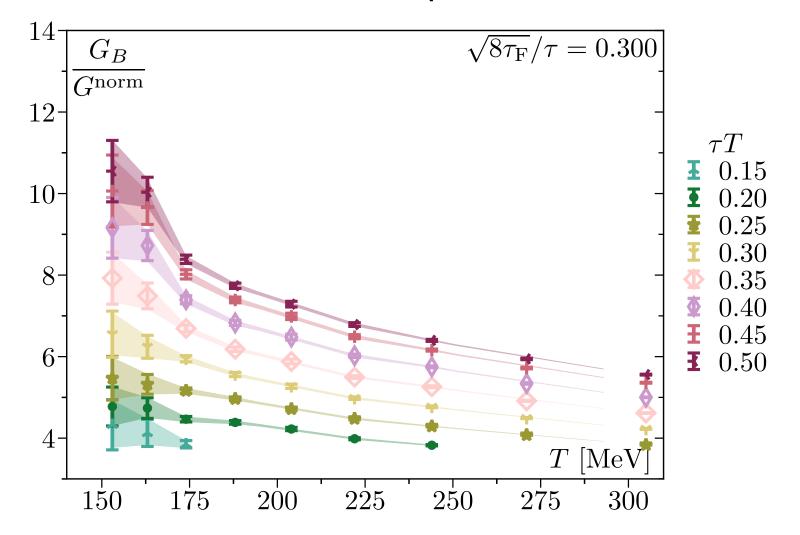
We target the following temperatures:

T = 153, 163, 174, 188, 195, 204, 220, 244, 251, 293, 352, 400, 444, 500, 1000, and 10000 MeV.

Interpolation needed

Our data is, in general, not obtained at a fixed temperature, so we need to interpolate the correlators also in T.





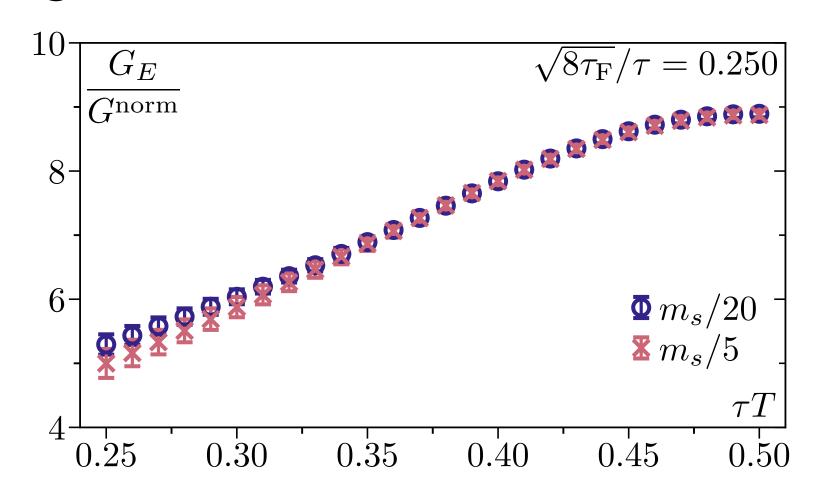
We target the following temperatures:

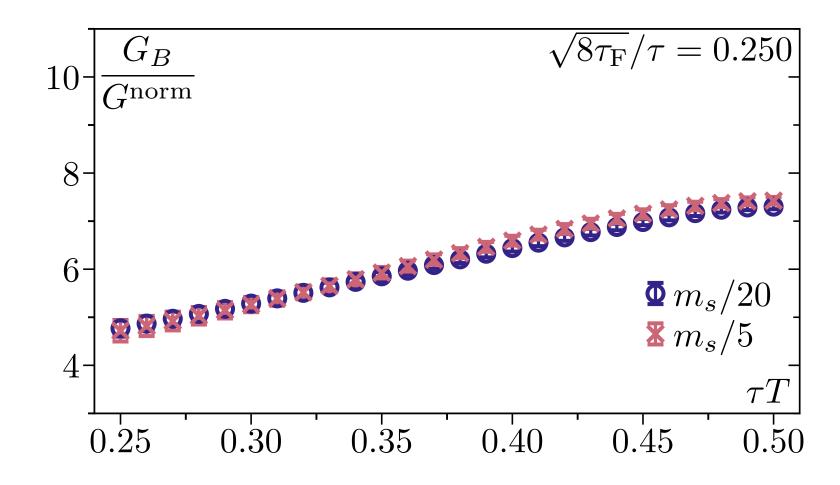
T = 153, 163, 174, 188, 195, 204, 220, 244, 251, 293, 352, 400, 444, 500, 1000, and 10000 MeV.

Interpolation needed

Fixed temperature for several \boldsymbol{a}

Our data is, in general, not obtained at a fixed temperature, so we need to interpolate the correlators also in T.

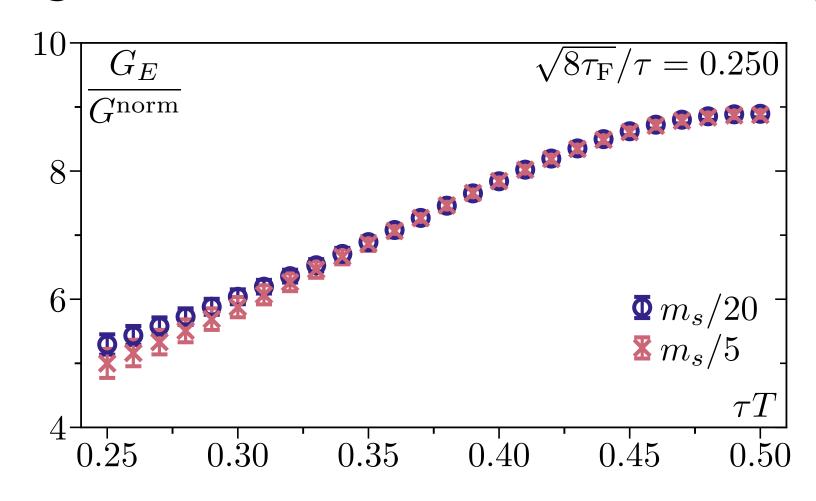


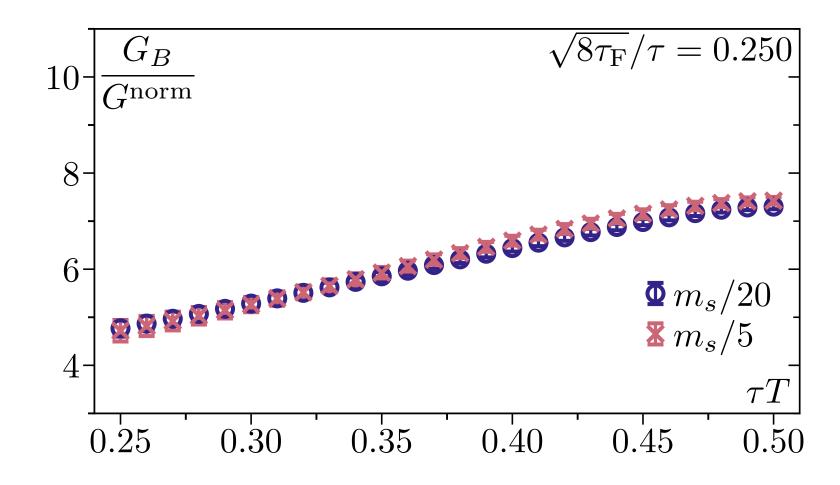


We target the following temperatures:

T = 153, 163, 174, 188, 195, 204, 220, 244, 251, 293, 352, 400, 444, 500, 1000, and 10000 MeV.

Our data is, in general, not obtained at a fixed temperature, so we need to interpolate the correlators also in T.





We target the following temperatures:

T = 153, 163, 174, 188, 195, 204, 220, 244, 251, 293, 352, 400, 444, 500, 1000, and 10000 MeV.

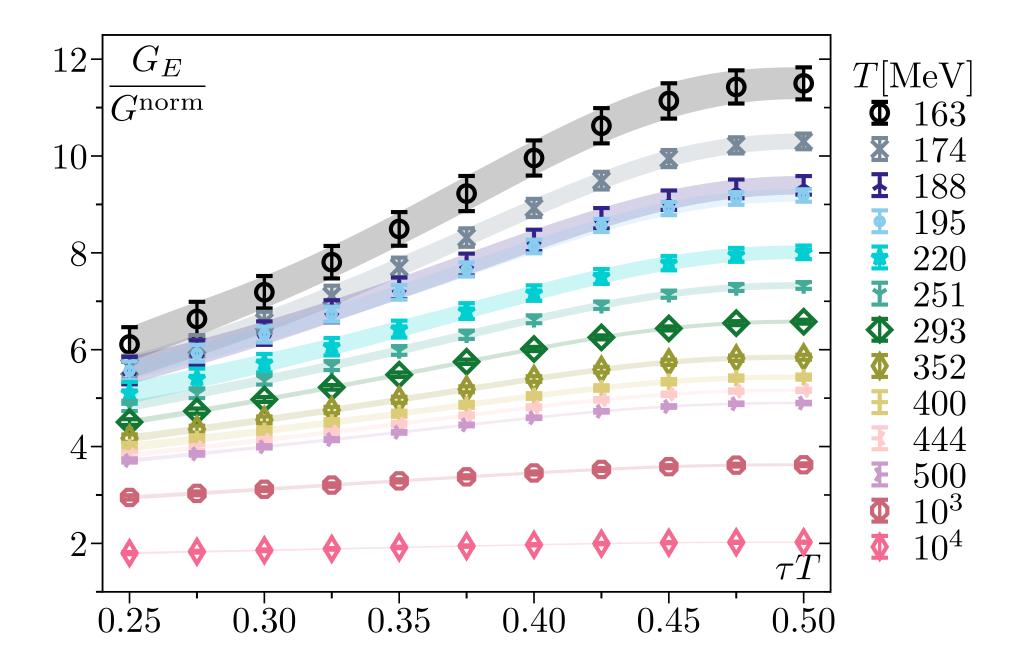
LIGHT QUARK MASS EFFECTS ARE ALREADY NEGLIGIBLE AT $T=195\,\mathrm{MeV}$

PERTURBATIVE QCD ESTIMATES

Can we use these LO and NLO estimates and scales to normalize the correlators again?

Can we use these LO and NLO estimates and scales to normalize the correlators again?

Electric spectral function:

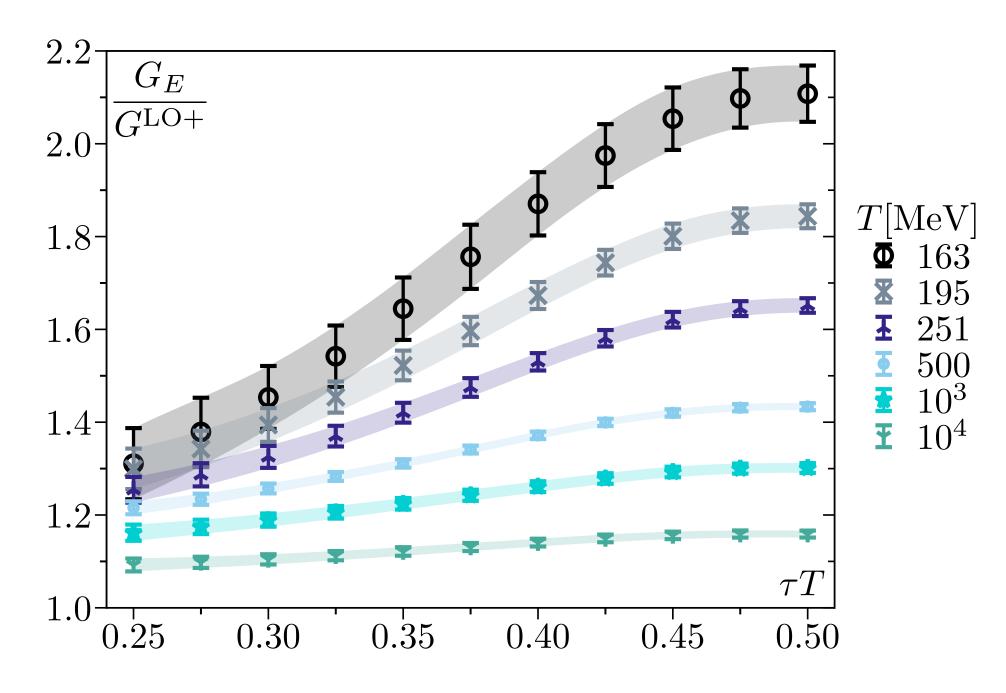


CORRELATORS NORMALIZE BY G^{norm}

Computed with $\rho_E^{\rm LO}(\omega,\tau)$ but factorizing out the running coupling

Can we use these LO and NLO estimates and scales to normalize the correlators again?

Electric spectral function:

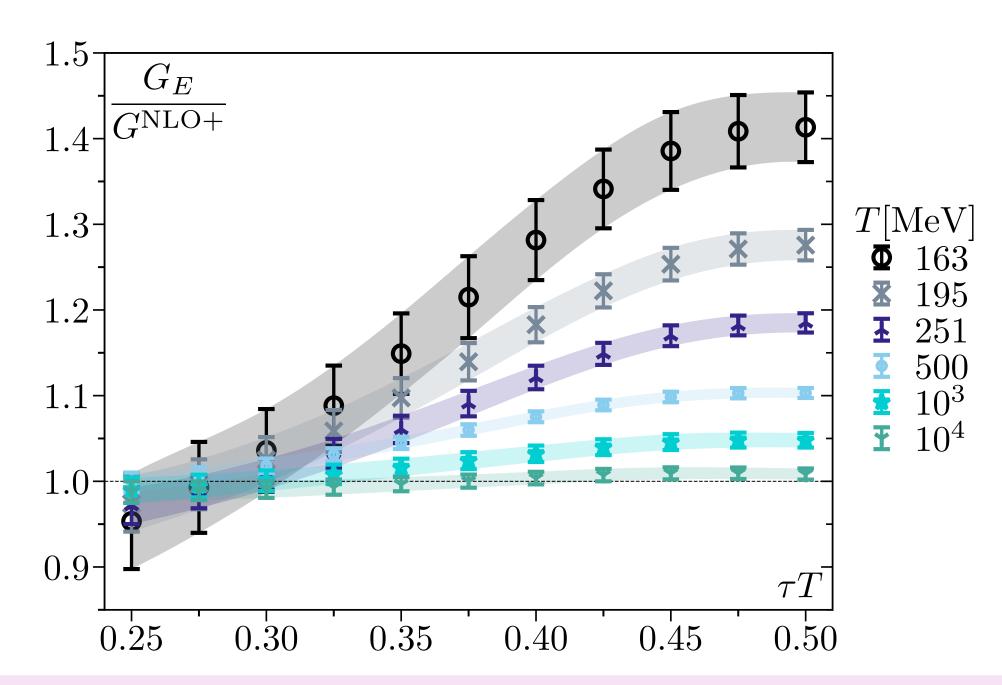


CORRELATORS NORMALIZE BY $G^{\mathrm{LO}+}$

Computed with $\rho_E^{\rm LO}(\omega,\tau)$ and also including the running coupling

Can we use these LO and NLO estimates and scales to normalize the correlators again?

Electric spectral function:

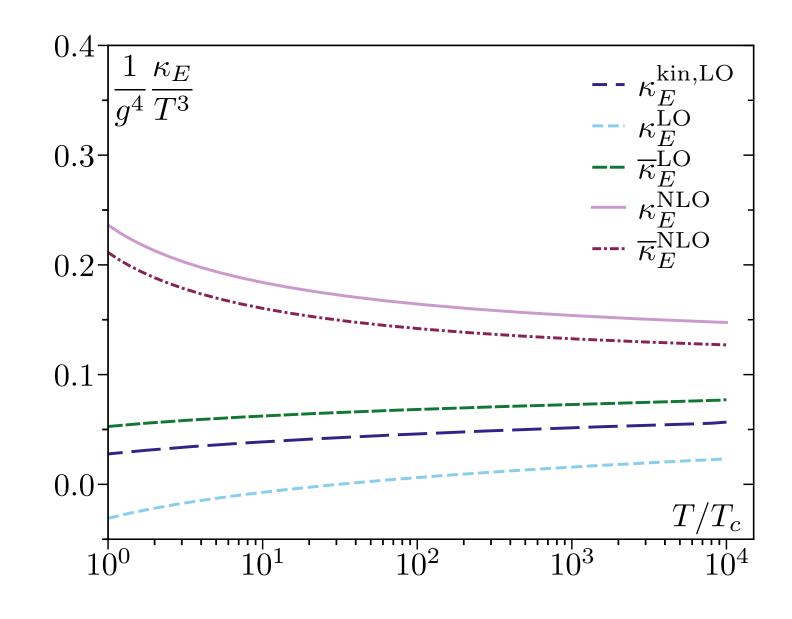


CORRELATORS NORMALIZE BY $G^{
m NLO+}$

Computed with $\rho_E^{\rm NLO}(\omega,\tau)$ and also including the running coupling

THE RATIO IS ALMOST FLAT FOR LARGE T, SO $\kappa o 0$

We can even compare the results with the direct perturbative calculation of the diffusion coefficient.



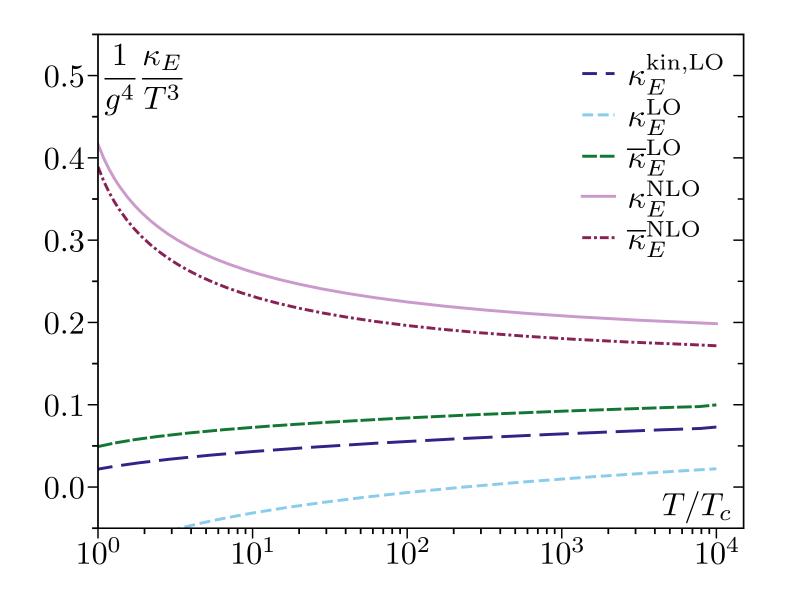
QUENCHED QCD

 $T_c \simeq$ 314 MeV

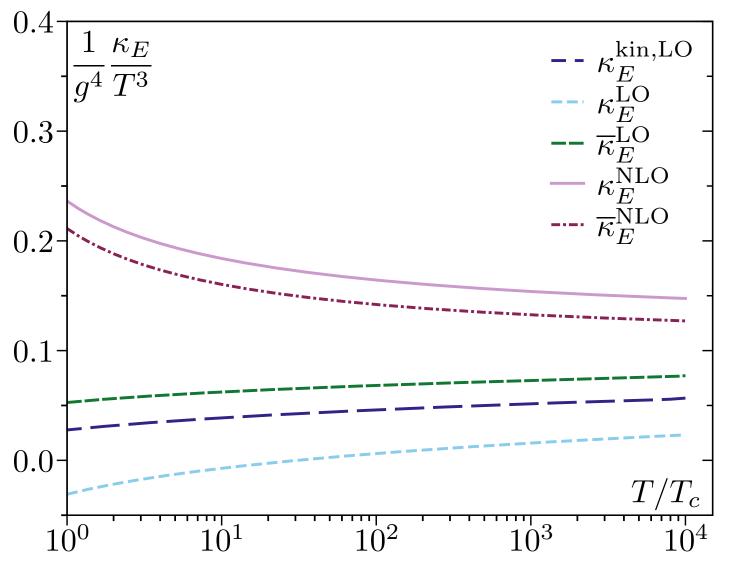
We can even compare the results with the direct perturbative calculation of the diffusion coefficient.

2+1 FLAVOR QCD

 $T_c \simeq$ 154 MeV

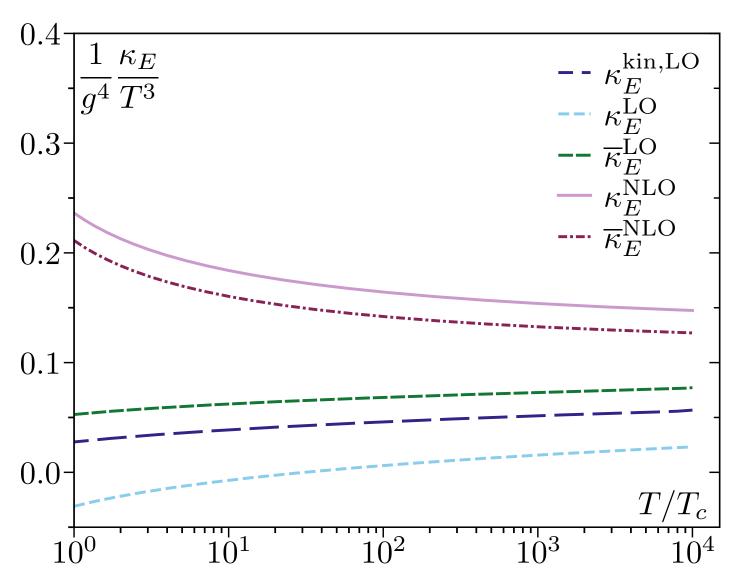


We can even compare the results with the direct perturbative calculation of the diffusion coefficient.



$$\overline{\kappa}^{\text{LO}} \equiv \frac{g^4 C_F}{12\pi^3} \int_0^\infty dq \, q^2 \int_0^{2q} dp \frac{p^3}{(p^2 + \Pi_{00}(p, T)^2)} \times \left\{ N_f n_F(q) [1 - n_F(q)] \left(2 - \frac{p^2}{2q^2} \right) N_c n_B(q) [n_B(q)] \left(2 - \frac{p^2}{q^2} + \frac{p^4}{4q^4} \right) \right\}$$

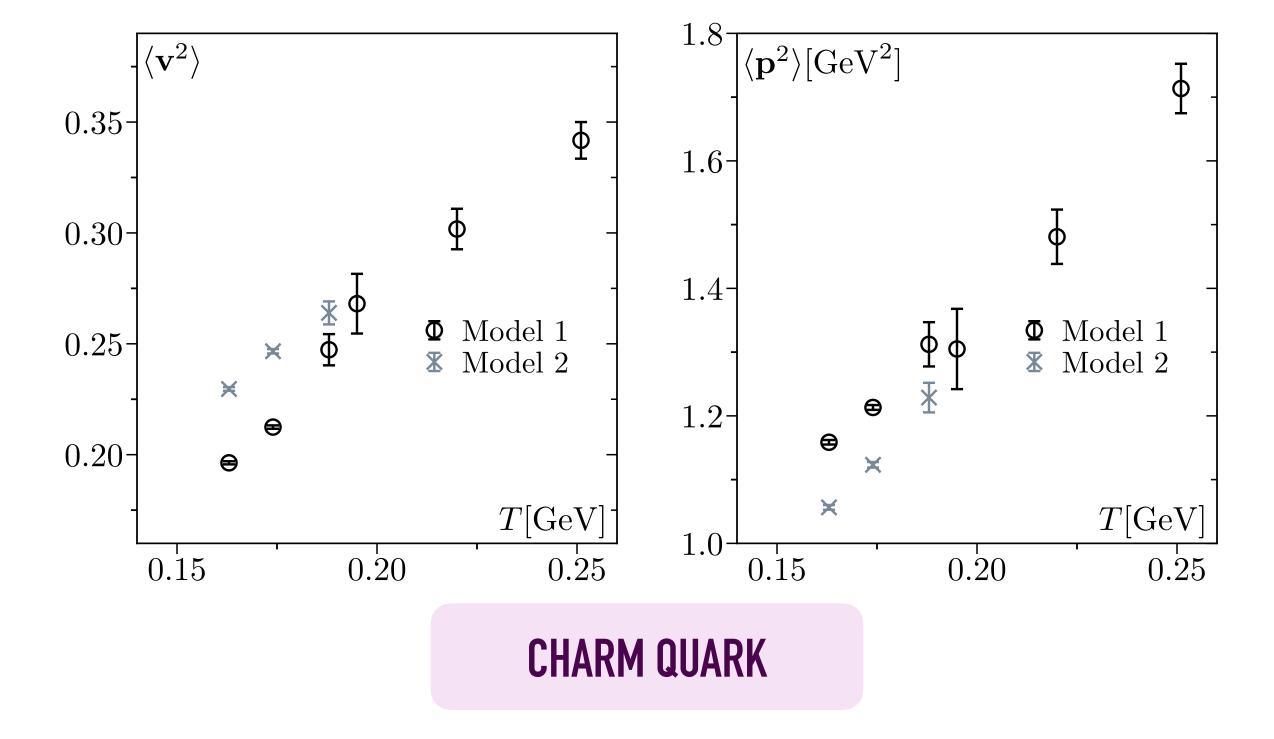
We can even compare the results with the direct perturbative calculation of the diffusion coefficient.

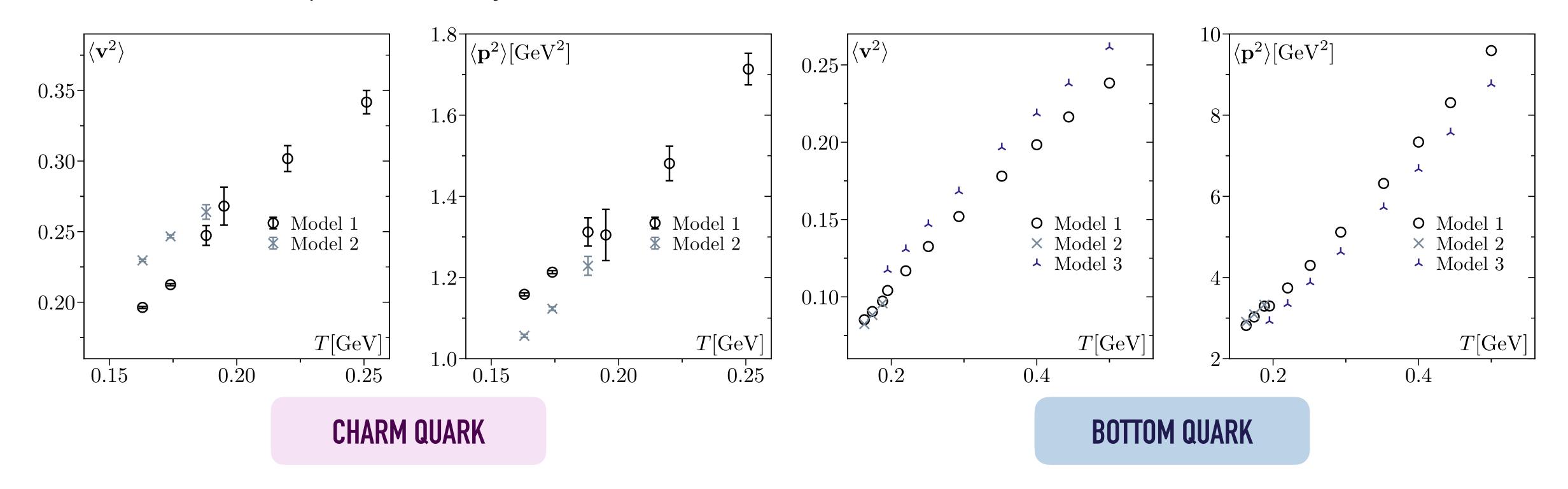


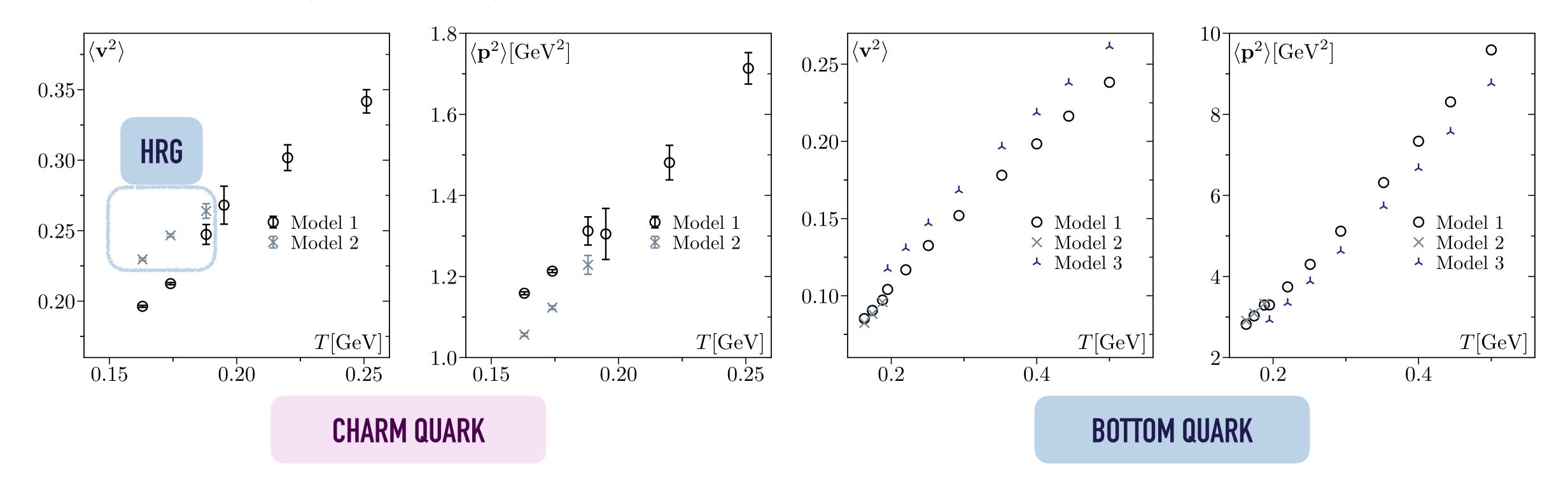
$$\overline{\kappa}^{\text{LO}} \equiv \frac{g^4 C_F}{12\pi^3} \int_0^\infty dq \, q^2 \int_0^{2q} dp \frac{p^3}{(p^2 + \Pi_{00}(p, T)^2)} \times \left\{ N_f n_F(q) [1 - n_F(q)] \left(2 - \frac{p^2}{2q^2} \right) N_c n_B(q) [n_B(q)] \left(2 - \frac{p^2}{q^2} + \frac{p^4}{4q^4} \right) \right\}$$

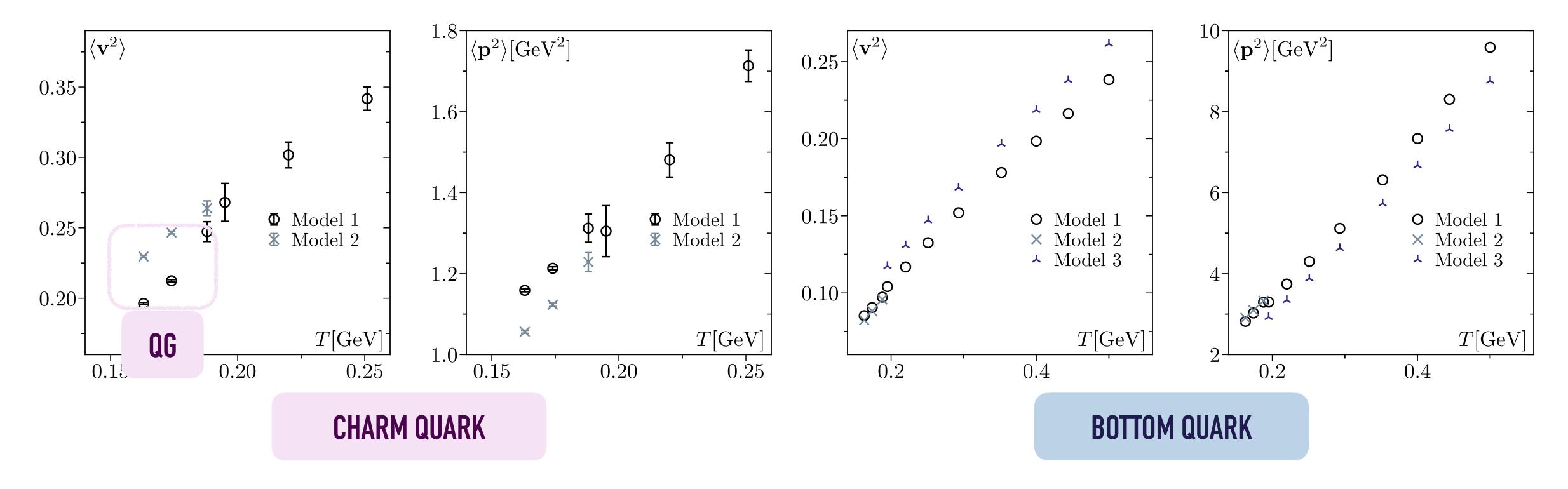
CAN BE RESUMMED TO IMPROVE THE CONVERGENCE

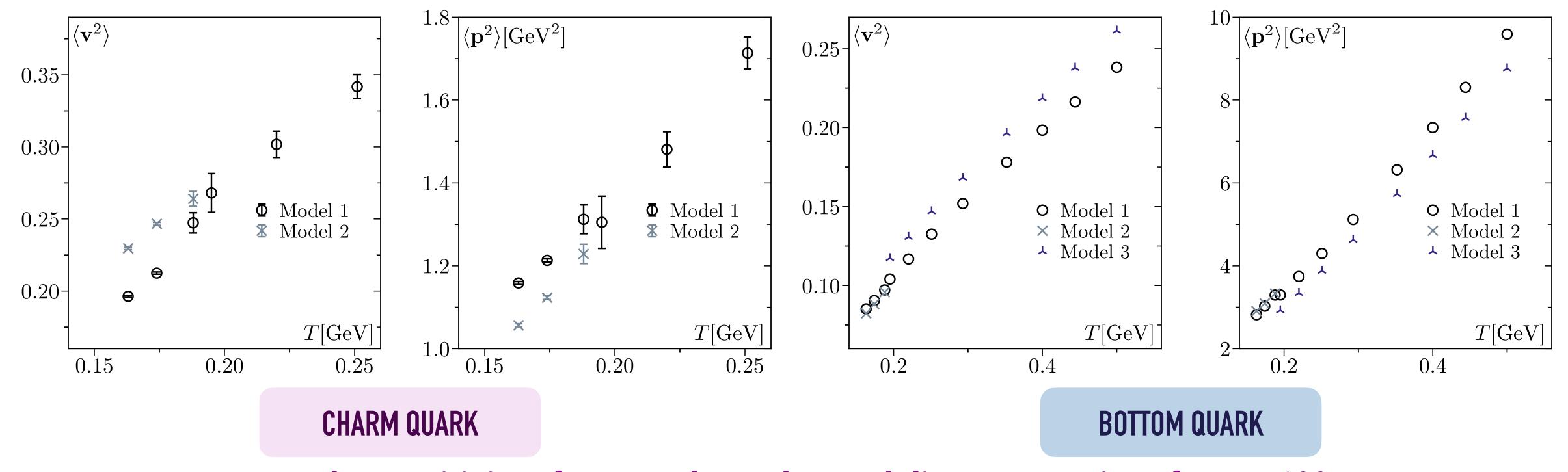
HEAVY QUARK DIFFUSIONS RESULTS











To assess the sensitivity of our results to the modeling assumptions for $T < 190 \ \mathrm{MeV}$