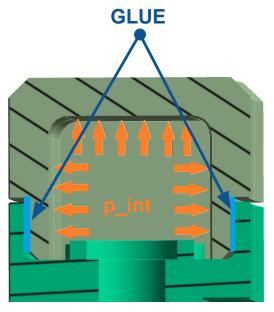


SVT Disk Cooling System Manifold - Update

Mechanical and Fluid Dynamic Analysis: Structural Verification and Flow Optimization

Giovanni Rizzo 09.23.2025

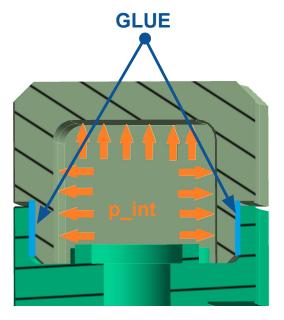

Mechanical Analysis

The goals of this analysis are:

- 1. Evaluate the effect of material choice on the system's **maximum pressure capacity**;
- Assess the static strength of the adhesive joint.

ADHESIVE JOINT ANALYSIS - Model

Modelling Hypothesis:
$$E_{
m a}=2\,{
m GPa}\,\,\sigma_{
m y}=25\,{
m MPa}\,\,fos=2$$


The glue's job is to transfer the load from the upper component to the lower one which is held in place by bolts.

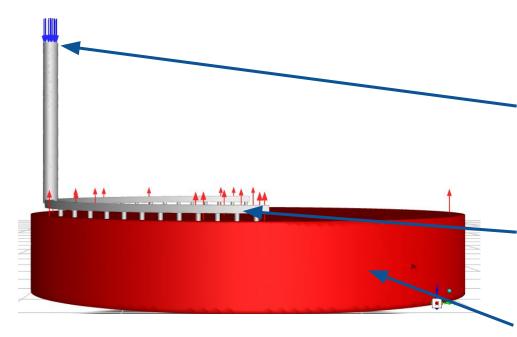
$$T = p_{int} \cdot \frac{A_{up}}{2} \quad F = p_{int} \cdot A_{l}$$

$$\tau = \frac{T}{A_{glue}} \quad \sigma = \frac{F}{A_{glue}}$$

ADHESIVE JOINT ANALYSIS - Model

Modelling Hypothesis:
$$E_{
m a}=2\,{
m GPa}\,\,\sigma_{
m y}=25\,{
m MPa}\,\,fos=2$$

The glue's job is to transfer the load from the upper component to the lower one which is held in place by bolts.


MAXIMUM SHEAR STRESS THEORY
$$p_int_max \coloneqq \frac{\frac{\sigma y}{fos}}{\sqrt[2]{\left(\frac{A_l}{A_glue}\right)^2 + 4 \cdot \left(\frac{A_up}{2}\right)^2}} = 42.446 \ bar$$

Fluid Dynamic Analysis

The goals of this analysis are:

- 1. To develop a **model** that accurately describes the physical phenomena
- 2. To **optimize the manifold design** to achieve a uniform mass flow rate through each orifice.
- 3. Experimental validation

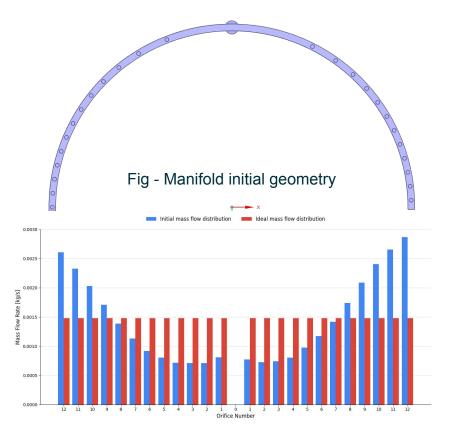
CFD MODEL SET UP

PHYSICAL MODEL:

- → Fluid: Air as an ideal gas, at 278.15 K
- → Turbulence Model: SST
- → Analysis type: Steady state

INLET:

- → Type: Mass Flow Inlet
- → **Value:** 0.037 kg/s
- Note: Extended pipe to ensure fully developed flow prior to impingement on the manifold wall.


WALL:

- → Type: No-slip wall
- → Roughness Height: 0.005 mm

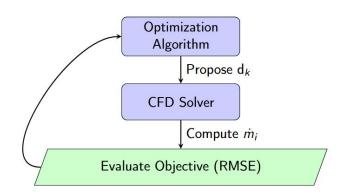
OUTLET:

- → Type: Pressure Outlet
- → **Value:** 0 (Gauge pressure) Baseline assumption
- Note: An external plenum (red cylinder) is modeled to avoid imposing artificial back-pressure on the outlets.

OPTIMIZATION

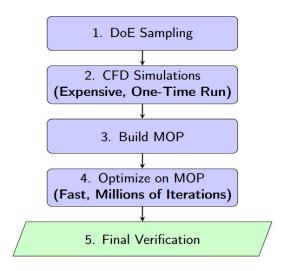
→ Methodology - Parametric Optimization

- Design Variables: The diameters of each orifice (d_i).
- Output Response: The mass flow rate through each individual orifice (ṁ_i)
- → Target Function Minimize RMSD


RMSD =
$$\sqrt{\frac{\sum_{i=1}^{N} (\dot{m}_i - \dot{m}_{\text{target}})^2}{N}}$$

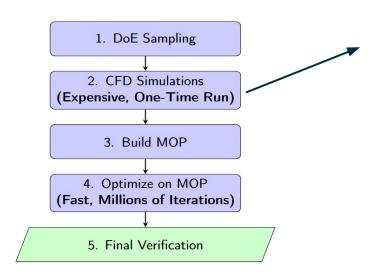
$$\dot{m}_{\text{target}} = \frac{\dot{m}_{\text{tot}}}{\text{\#orifices}} = 0.00148 \frac{\text{kg}}{\text{s}}$$

OPTIMIZATION - Method [2]


Problem: Very high computational cost of CFD simulation

Direct optimization process

- X Very slow
- X High Risk of Local minimum


Metamodel-based Optimization

OPTIMIZATION - Method

Problem: Very high computational cost of CFD simulation

Metamodel-based Optimization [3]

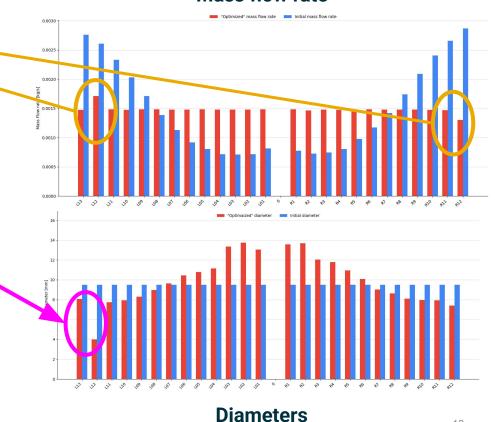
Train a metamodel using CFD simulations to achieve a high **Coefficient of Prediction**.

X Complex geometry needs many points to create a MOP with high CoP

Attempt 1: model without plenum:

- 50 Samples
- CoP = 0.9
- 10000 iteration

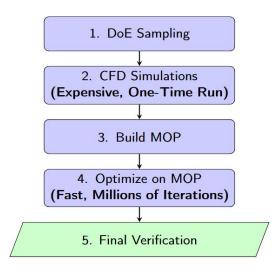
OPTIMIZATION - Results 1


Mass flow rate

Non-uniform mass flow distribution

Caused by the non-uniformity in the diameter trend

The simple model generates numerical issue


Hp: Without Plenum p_atm is applied directly at each orifice -> like a pump

OPTIMIZATION - Current status

Problem: Very high computational cost of CFD simulation

Metamodel-based Optimization

Attempt 2: model with plenum:

- 100 Samples
- CoP = 0.2

CoP is too low - a larger sample size is required

Attempt 3: model with plenum:

- 300 Samples
- CoP = ? currently running

Increasing the sample size is time-consuming

SUMMARY

- Assessed the static strength of the adhesive joint.
- → Evaluated different optimization approaches.
- → Defined and performed a **sensitivity analysis** and the **subsequent optimization**.

NEXT STEPS

- → Analyze the final optimization results.
- → Conduct experiments to validate the simulation results