MVTX Alignment

LBL-EIC Meeting Greg Ottino September 30th, 2025

Overview

- What is alignment?
- The sPHENIX MVTX
- Metrology of the MVTX, lessons for SVT
- In situ alignment with data
- Takeaways

What is alignment?

- Modern nuclear and particle physics experiments rely on precision tracking of charged particles for a variety of physics analyses
- In the last several decades, silicon based sensors have become the gold standard for tracking reconstruction due to their fast readout, high precision, and radiation tolerance
- These detectors are composed of individual sensors that are segment at the chip level (i.e. as pixels or strips), and attached to a mechanical support
- In order to achieve the highest position resolution, the position of each sensor must be known to a high degree of precision
- The process of determining the deviation in space from the idealized position of each sensor is commonly referred to as alignment
- Alignment usually uses a combination of metrology and in situ approaches

The sPHENIX detector

 sPHENIX is a (relatively) new experiment based at RHIC, designed with full tracking coverage to |eta|<1.1 as well as electromagnetic and hadronic calorimetry

sPHENIX Tracking Detectors:

- MVTX Maps based vertex detector for precision determination of PV and SVs
- INTT Intermediate tracker for fast timing readout
- TPC Time Projection chamber for momentum resolution and PID
- TPOT TPC Outer Tracker for data driven distortion corrections in the TPC

SPHENIX MVTX

- MVTX is Maps VerTeX detector at sPHENIX
- 3 layers of Silicon, with r0 at ~2.5 cm from beamline
- 492 sensors in 3 layers (12, 16, and 20 staves)
- Alpide chip (same as ALICE ITS2)
- Low mass (~0.3% X0 per layer)
- More information here

Metrology

- During assembly, a coordinate measuring machine (CMM) was used to guide and measure the planar surfaces to which the staves were mounted
- CMM measurements transformed into planar objects as a geometric description, wrt global origin
 - 8 points, 4 per planar surface, 2 planes corresponding to N and S ends of staves
 - Distilled to 1 plane per staves, using LS best fit of measurements, with outliers removed by hand in cases that there was a large disagreement with the model
 - In principle, this allows for the determination of the relative angle of each stave in the detector construction

CMM Measurements

e.g. NEW of Layer 0

- Least-squares fit touched points on multiple faces of the part to its CAD model *
- 2. Constrain 6DOF of a rigid body
- Define an origin of the rigid body
- 4. Define axes from the origin of the rigid body

Local geometry, per layer

- CMM measurements performed by LBL
- >4 pts measured for each stave end (N and S), with a best fit plane to these points defining the measured stave plane
- Origin, per layer, is extracted from the center of a cylindrical fit to all planes in the half layer, and aligned with the model origin for comparison

Cartoon shows one example, 4 points are measured on each blue face, defining the stave plane (best fit to 8 pts).
Light blue indicates the measured stave plane, extracted from both faces

Assembly

Local geometry, combining layers

- Once the measured and modeled stave planes measured for each layer, they need to be combined to have useful interlayer information
- This is non trivial, as there is known deformation, due to insufficient iterations between part mechanical design and manufacturing, that prevents trivially combining the layers together
- Optimal strategy: align the origins of each of the measured rigid bodies (L0,1,2) and use Finite Element Method to model measured deformations

This was **not** done for the MVTX

Moving offline, what is alignment?

- Position of detector elements deviate from ideal position by a six dim affine transformation (3 translations and 3 rotations)
- Total transformation of detector is thus a large least square problem, of which an individual track correlates some number of unknown parameters
- Alignment is the process of reducing the width of the residual distribution to the intrinsic detector resolution * projection uncertainties

sPHENIX offline alignment implementation

- Alignment in sPHENIX is parameterized by 3 global translations and 3 local rotations per active surface e.g. per MVTX chip
- Parameters are changes wrt "simulation" geometry
 - Simulation geometry currently is ideal geometry + a global shift of the entire detector wrt the global origin to accurately place the MVTX in the Interaction Region
 - Global shift known from surveys and xy position of vertex
 - Global shift should not impact cosmics, which is the data set shown here today
- Misalignments are applied to cluster positions at run time, when data is read in by analysis code
- Alignment is iterative to account for bias in track residuals
 - Take advantage of existing Millepede II software

Alignment strategy, in situ

- In principle, collision events should provide sufficient information to constrain the position of tracking detector elements
- Practically, certain constraints ('weak modes', non radial alignment) are better constrained by tracks that are not strictly radial
- Significant focus, esp for vertexing, is internal and half to half MVTX alignment

Alignment strategy, in situ

- Track fits are applied to **all** clusters in MVTX to determine alignment
- Projected residual is calculated to determine quality of half to half alignment
 - Computed as a linear fit in one half of the detector, projected to the opposite half, and the residual is then computed wrt to the projection

Alignment strategy, in situ

Alignment status, data sets and strategy

- Approx 180 hours of cosmic runs taken in Oct '24, > 200 hours in 2025
- Only 70 hours processed for todays results
- 26 iterations applied to cosmic data at varying scales in each MVTX half

Iterations	East	West
0	Half detector trans	Fixed
1-2	Stave trans	Fixed
3-5	Sensor trans	Fixed
7-9	Fixed	Stave trans
10-11	Fixed	Sensor trans
12-13	Stave trans	Fixed

Iterations	East	West
14-17	Sensor Trans	Fixed
18-19	Fixed	Stave trans
20-21	Fixed	Sensor trans
22-23	Sensor trans	Fixed
23-25	Sensor local angle	Fixed
27	Fixed	Sensor local angle

O Iterations on MVTX cosmics: one side

Expected biased residual width ~12 um

X in local sensor coor: r-phi Y in local sensor coor: z

26 Iterations on MVTX cosmics: one side

Expected biased residual width ~12 um

O Iterations on MVTX Cosmics: projected

Expected unbiased residual width ~60 um (1 GeV muon)

26 Iterations on MVTX Cosmics: projected

Expected unbiased residual width ~60 um (1 GeV muon)

26 Iterations on MVTX Cosmics: projected opp

Expected unbiased residual width ~60 um (1 GeV muon)

Comments on CMM vs in situ results

- Both the CMM data and the offline analysis can produce alignment parameters in the sPHENIX format which can then be used to cross check the impact on the residual distribution
- Disagreement between two methods, in particular in the angle between staves in different layer
- Post mortem with Yuan Mei provided lots of insight
 - CMM data, particularly between MVTX layers, is not a rigid body and would require a Finite Element Transformation to appropriately characterize the transformations
- Ultimately, CMM data was not used to constrain the MVTX, slowing the MVTX alignment process

Takeaways

- Concluded by Yuan Mei in 2023
 - Designers must be with the assembly (debugging) team and the actual hardware all the time
 - A lead engineer should have led the project
 - Use short intense bursts of work to boost efficiency
 - Everybody's onsite with undivided attention
 - Communicate, plan, and solve problems on the spot
 - Although the staves are constructed out of Carbon composite space frames, the overall rigidity is not high enough to warrant a one-sided mechanical constraint. This choice in MVTX produces global torsional distortion
- I would add
 - Ensure continuity for personnel on the project
 - Clear documentation and management of code/resources
 - If metrology is used for alignment, ensure that final data output is formatted as transformation parameters that can be brought into the offline codebase trivially
 - Install your detector in the correct position by ensuring sufficient fine control near active sensor area

Backup

Estimated unbiased residuals (H/T Xin)

Estimation of the Half-Detector Residual Width at L1

Measurements A (L2), B (L0) to form a straight-line and project to L1, calculate residual of measurement C w.r.t the projection

$$\sigma^2 = \sigma_A^2 + \sigma_B^2 + \sigma_C^2$$

 $\sigma_{\!A,B}$ not resolution of A,B, but the residual width contribution from measurement A,B, respectively coupled with projection level arm

For simplicity, single hit resolution $\sigma_0=30/\sqrt{12}=8.7~\mu m$ and L0-L1, L1-L2 are roughly equal distanced: 8mm

$$\sigma_{\rm A} = \sigma_0/2 = 4.4~\mu m$$
 only single hit resolution contribution from A

 σ_B two components: hit resolution from B (same as A) + MCS due to L1 resolution due to MCS from L1 (0.3%X0), assuming 1 GeV muon: ~13.6 mrad * $\sqrt{0.003}$ *8 mm = 6.0 μ m

$$\sigma_B = \sqrt{4.4^2 + 6.0^2} \sim 7.4 \ \mu m$$

$$\sigma_C = \sigma_0 = 8.7 \ \mu m$$

$$\sigma = \sqrt{\sigma_A^2 + \sigma_B^2 + \sigma_C^2} = \sqrt{4.4^2 + 7.4^2 + 8.7^2} = 12.2~\mu m$$

Estimated unbiased residuals (H/T Xin)

Estimation of the Half-to-Half Residual Width

For simplicity, considering only measurements A (L2), B (L0) to form a straight-line and project to opposite half, calculate residual of measurement C w.r.t the projection

$$\sigma^2 = \sigma_A^2 + \sigma_B^2 + \sigma_C^2$$

 $\sigma_{A,B}$ not resolution of A,B, but the residual width contribution from measurement A,B, respectively coupled with projection level arm

$$\sigma_A = \sigma_0 * (25.2 * 2)/(41.5 - 25.2) = 27 \ \mu m$$

only single hit resolution contribution from A + projection level arm

 σ_B two components: hit resolution from B (similar as A) + MCS due to L0 hit resolution + projection

$$\sigma_A = \sigma_0 * (41.5 + 25.2)/(41.5 - 25.2) = 36 \ \mu m$$

resolution due to MCS from L1 (0.3%X0), assuming 1 GeV muon:

~13.6 mrad *
$$\sqrt{0.003}$$
 * 25.2 * 2 mm = 37 μ m

$$\sigma_B = \sqrt{36^2 + 37^2} \sim 52 \ \mu m$$

$$\sigma_C = \sigma_0 = 8.7 \ \mu m$$

$$\sigma = \sqrt{\sigma_A^2 + \sigma_B^2 + \sigma_C^2} = \sqrt{37^2 + 52^2 + 8.7^2} = 64 \ \mu m$$

Residuals in ideal geometry

- Baseline case is model geometry only
- Relevant parameter here is the width of the distribution, approximated with a gaussian

Coor	mean	sigma
x east	-(2.37±.39)e-2	(6.60±.41)e-2
x west	(6.13±.36)e-2	(4.47±.46)e-2
y east	-(7.85±.31)e-3	(6.12±.54)e-2
y west	(4.10±.68)±e-2	(9.24±1.17)e-2

x pos [mm]

Residuals w/ chip metrology and stave rotation

- Chip metrology and stave rotation applied
- Holding off on translations until q's are resolved
- General decrease in widths of gaussian fits

Coor	mean	sigma
x east	-(2.48±.39)e-2	(6.37±.44)e-2
x west	(6.12±.34)e-2	(4.19±.46)e-2
y east	-(7.04±.30)e-3	(5.81±.45)e-2
y west	(3.46±.73)e-2	(9.85±1.23)e-2

SecW: S9S12S15 & S2S3S4

Angle (mrad)	CMM (model)	Alignment (model)
L12	37.70 (34.91)	34.56 (34.86)
L01	147 (148.4)	149.6 (149.2)
L02	184.7(183.3)	184.1 (184.1)

Angle (mrad)	CMM (model)	Alignment (model)
L12	37.48 (43.63)	44.62 (43.68)
L01	17.48 (17.46)	18.75 (18.34)
L02	20.01 (26.17)	25.88 (25.34)

^{*} note difference in "model" angles is the result of rounding in the Alignment column

SecE: S3S4S5 & S8S11S14

Angle (mrad)	CMM (model)	Alignment (model)
L12	46.76 (43.63)	43.05 (43.68)
L01	16.45 (17.46)	17.95 (18.34)
L02	30.32 (26.17)	25.10 (25.34)

Angle (mrad)	CMM (model)	Alignment (model)
L12	39.14 (34.91)	35.26 (35.86)
L01	132.0 (148.8)	149.2 (149.2)
L02	171.2 (183.3)	183.3 (184.1)

^{*} note difference in "model" angles is the result of rounding in the Alignment column

