

Test of an Alumina-filled wax large-aperture Nb₃Sn canted cos-theta dipole.

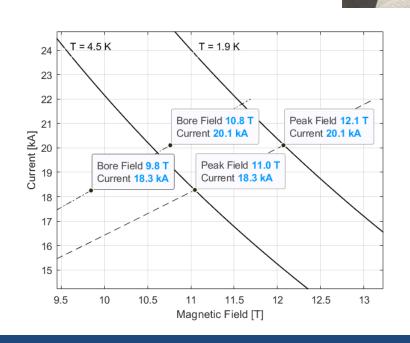
M. Baldini,

J. DiMarco, S. Krave and S. Stoynev MDP meeting October 8 2025

Outline

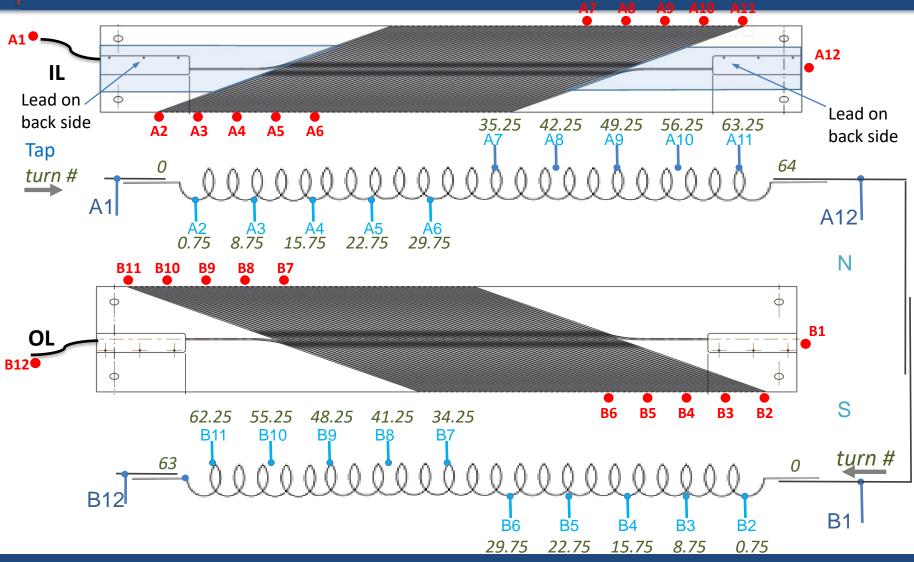
- CCT5- W (design by D. Arbelaez and LBNL team)
 - Nb₃Sn conductor
 - Impregnated with filled wax
 - 90 mm bore

- The magnet was designed and fabricate at LBNL
- Tested at FNAL because of power supply limitations at LBNL
- Test campaign started on June 18 and it was completed a couple of weeks ago.
- Magnet is now warm ready to be removed from the pit

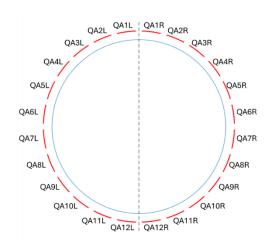


CCT5-W Test Objectives

- Probe training behavior and operating limit of filled wax impregnated CCT magnet that is otherwise identical to CCT5 (90 mm aperture, ~ 10 T bore field at 4.5 K)
- Probe memory after thermal cycle
- Probe temperature dependence of training and operating limit.
- Estimated SSL current is 18.3 kA at 4.5 K and 20.1 kA at 1.9 K



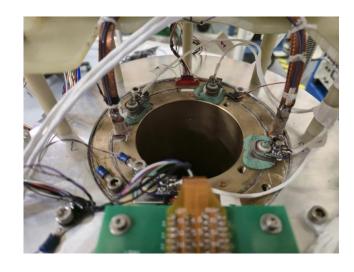
CCT5W voltage tap arrangement


- 10 internal voltage taps per coil (20 total)
- Voltage taps wires on Nb-Ti leads on both lead end and return end (4 total)

First thermal cycle we did not have A11-A12 segment properly established

CCT5-W Instrumentation provided by LBNL

- Strain gages
 - 2 azimuthal / longitudinal strain gage stations on the shell at the midplanes (4 channels)
- Quench antennas
 - 12 quench antenna signals (24 elements with left/right subtraction)
- RF sensor (2): top head modification
- Optical fiber on the shell (2)



Instrumentation provided by FNAL

Acoustic sensors: #8 installed on the top and bottom of the magnets

Warm bore flex Quench Antenna:

- 28 mm antenna with slanted channel orientation (2 × 10 channels) and another one with 10 straight channels
- 41 mm antenna with 16 channel that can slide over
- 100 kHz sample rate

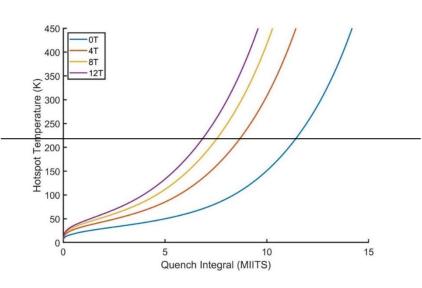
CCT5-W test plan

\square At 4.5 K operation with 30 m Ω dump resistor:

The maximum current will be limited to 18.3kA, 8.5 MIITS

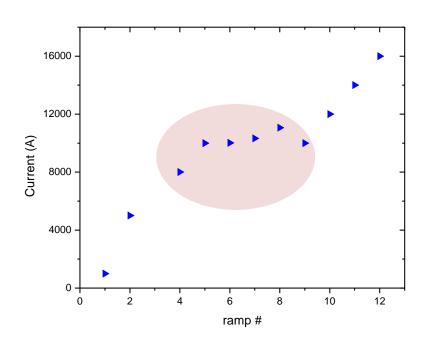
- If no quenches occur, stop and trip each 2 kA starting from 10 kA and check current discharge time and MIITs to make sure the magnet can be protected.
- Ramp to 20/50 A/s up to 19kA.
- Ramp rate studies

10/8/2025


At 1.9 K operation with 30 mΩ dump resistor:

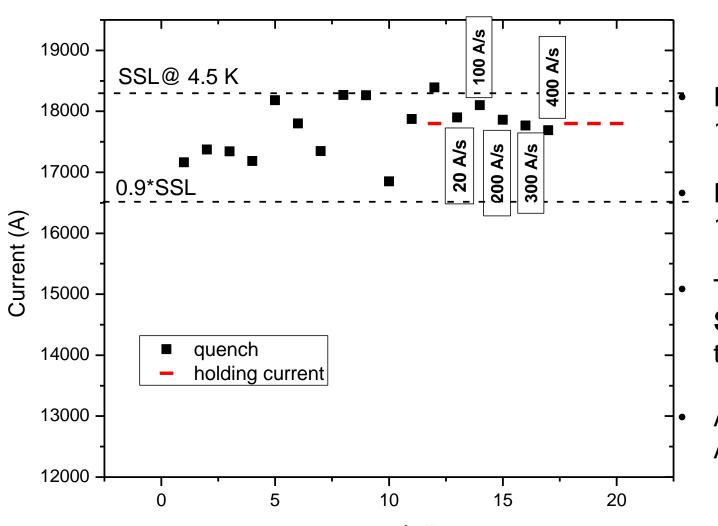
- The maximum current will be limited to 20.1 kA and 8.5 MIITs
 - Temperature dependence studies (2.2/2.8/3.4/4.0/4.5 K)
 - Magnetic measurements

CCT5-W MIITS assuming RRR=291



10/8/2025

Available MIITs are around 8-8.5 @8-10 T

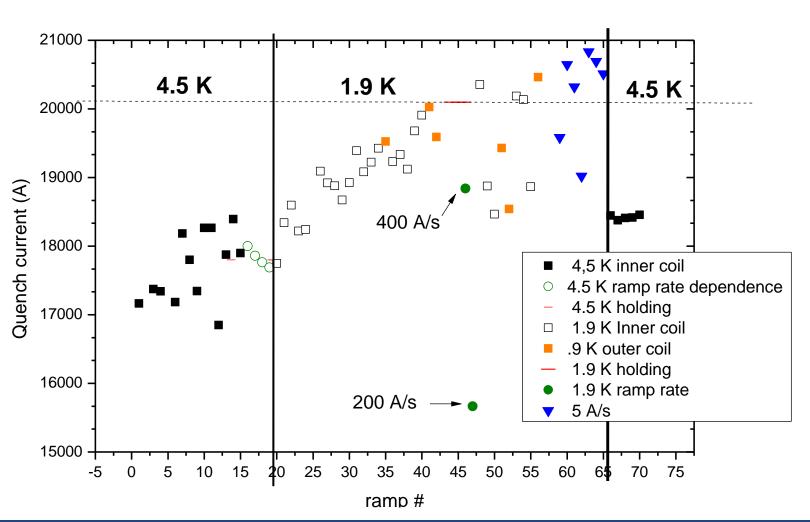

We expected to use 5 MIITs during currents decay at high current.

Test was started with a very conservative approach. For I>10 kA: ramp to current levels were performed with 2kA steps and then trip.

- Voltage threshold was increased from 50 to 250 mV
- Nominally 3 ms dump delay, 1.8 ms actual delay (to see voltage rise)

"Training quenches at 4.5 K"

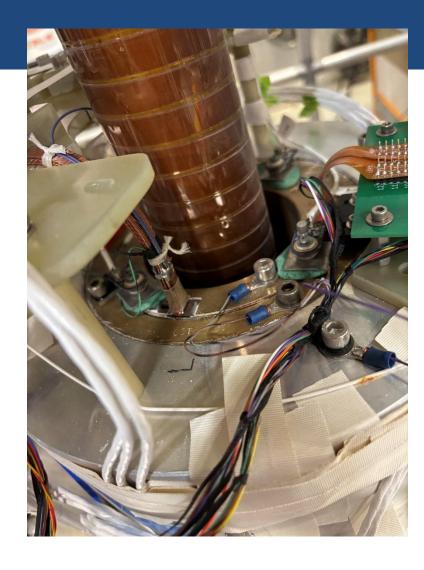
From quench 4: 250 mV detection voltage and 1.8 ms delay

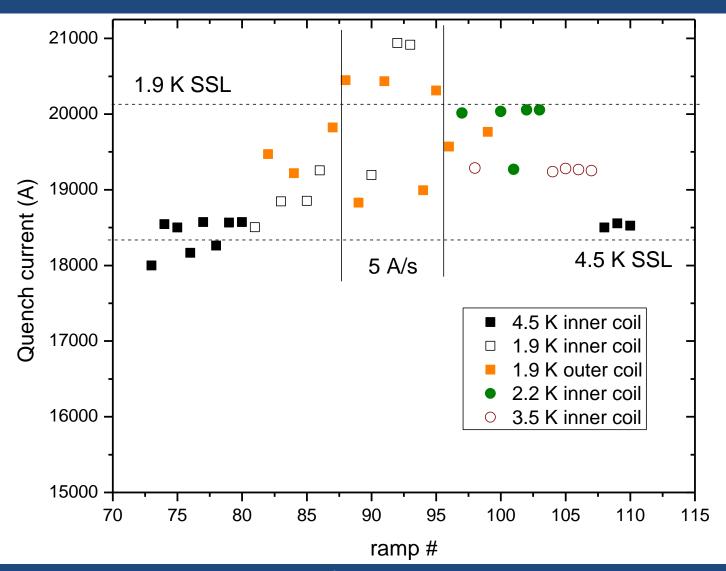

Ramp 13: we ramp to 17.8 kA, hold current for 10 min then ramp and quench at 18.4 kA

The last three ramps: ramp up to 17.8 kA (97% SSL), hold current for 10 min and ramp down to 0.

All quenches were in the inner coil: A04-A03, A07-A07

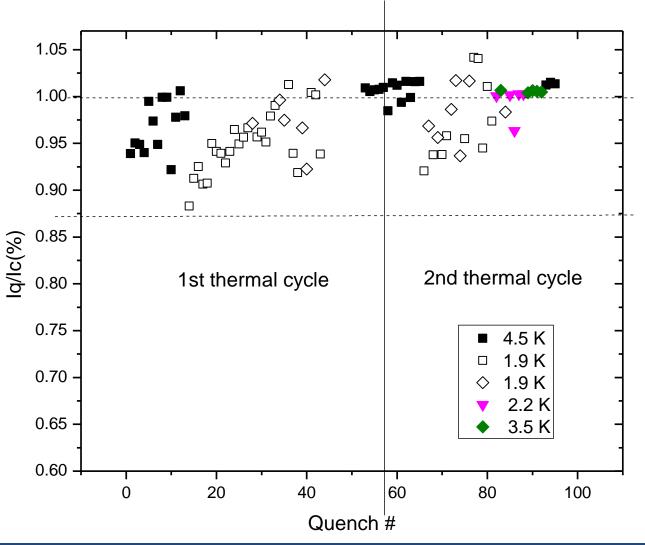
Training quenches at 1.9 K


- CCT5-W is training at 1.9 K
- Ramp #35: first quench in the outer coil
- Holding current for 10 min at 20100 A (100% SSL)
- Ramp rate dependence:
- Ramp #46 at 400 A/s: quench at 18839 A
- Ramp ##47 at 200 A/s: quench ar 15667 A (78% SSL)
- Erratic behavior after that
- No significant change ramping at 5 A/s
- Stable behavior at 4.5 K


Thermal cycle

- Magnet was partially lifted from the pit
- Strain gauges were rewired
- Voltage tap segment A11-A12 was re-established
- Fibers were broken
- Some small was flakes can be seen on the magnet

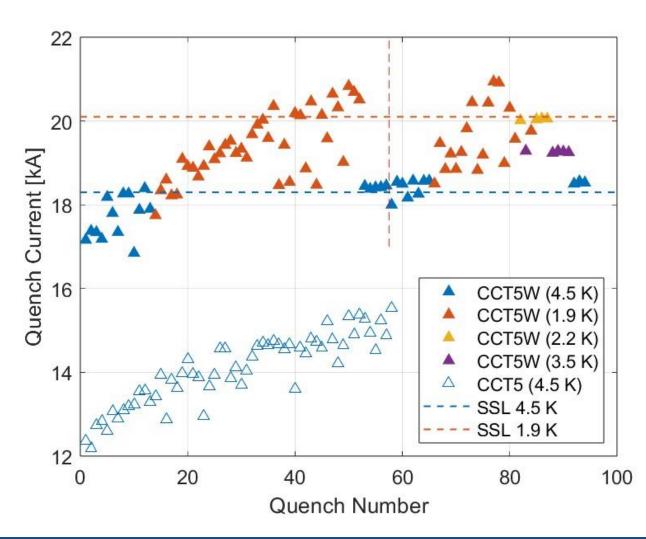
2nd Thermal cycle



- Quenches at 4.5 K are consistent with what was observed in the 1st thermal cycle
- Quenches current values at 2.2 K and 3.5 K are also stable.
- Behavior at 1.9 K appear more erratic.
- More quenches in the outer coils
- Highest quench current at 20939 A ramping at 5 A/s (104% SSL).

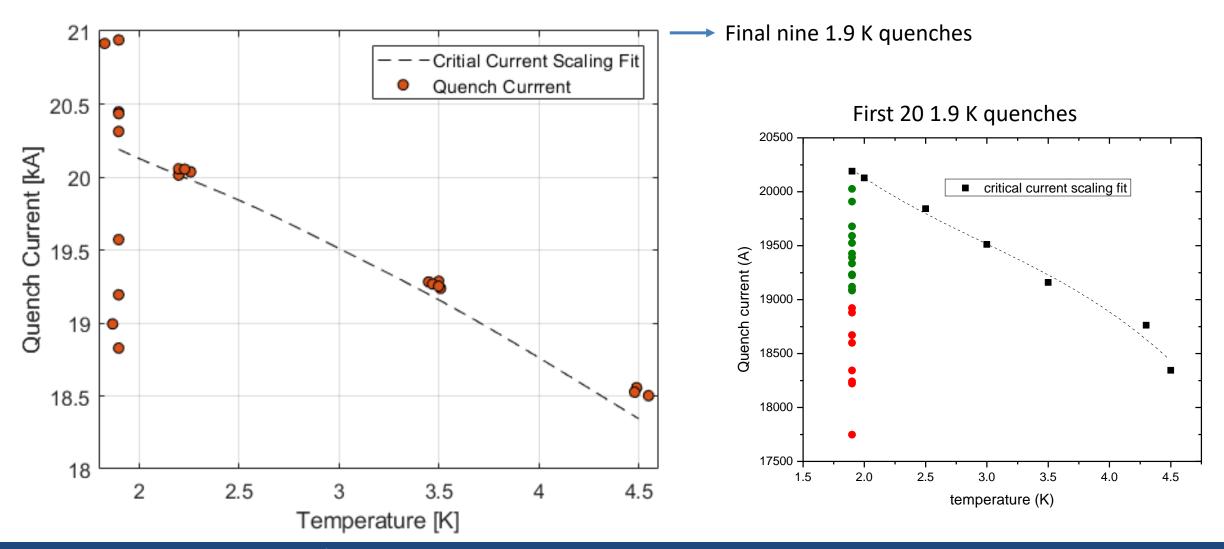
Percentage of Short Sample Limit

Iq/Ic ratio calculated for each measured temperature


All quenches observed during ramps at 20 A/s or 50 A/s are in within 85%< Iq<104%

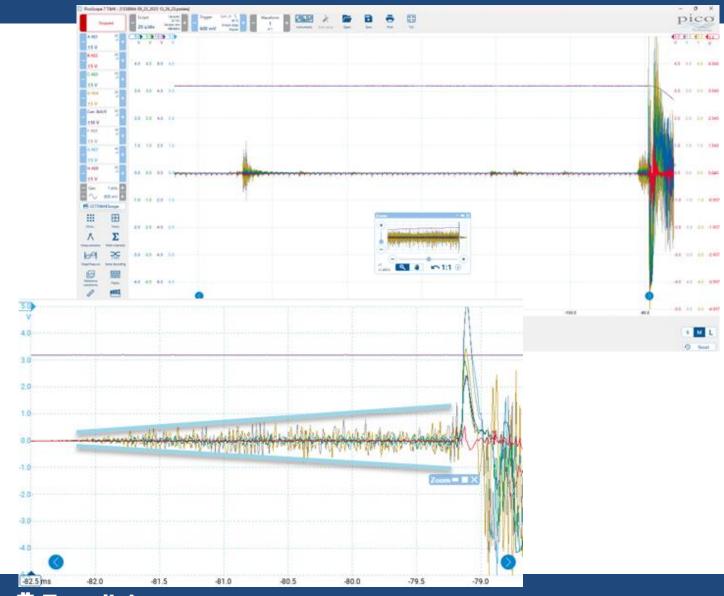
No good memory at 1.9 K

CCT5-W vs CCT5



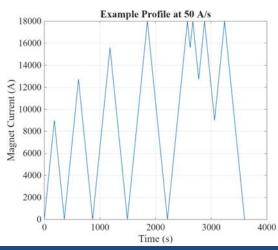
Magnet performances significantly improved from CCT5

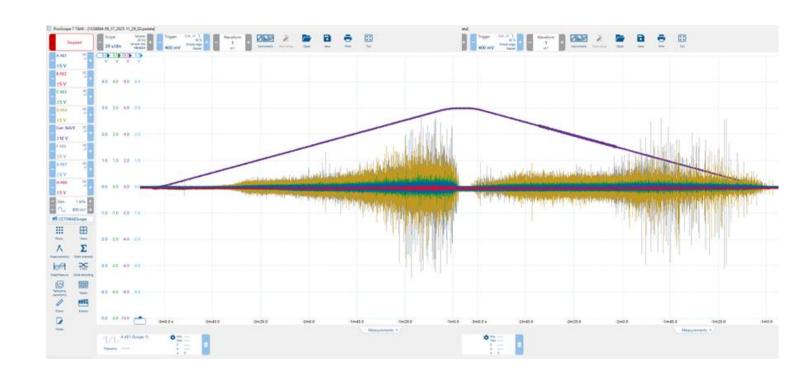
Temperature dependence



Acoustics sensors preliminary results (S. Krave)

- Instrumentation:
 - AE Sensors on both sides of magnet
 - Half-coil bucked VT and current clamp
- General Behavior: No acoustic events directly before quench
- The onset of quench corresponds to crescendo of acoustic noise (local boiling?)
 - Fast ~2.5 ms before detection





Hysteresis loops (S. Krave)

- Ramps in multi-step profile at multiple ramp rates
 - Separate ramp rate, history and AE Rate scaling, reversibility
 WRT acoustics

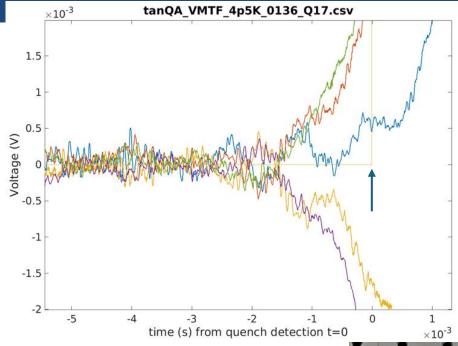
Quench Antenna (J. DiMarco)

Three types of QA were used:

- Inter-layer QA
- Warm-bore slant QA with 28mm dia.
- Tangential warm-bore QA array with 42 mm dia.

Data taken typically for entire ramp, all tests

~1.3 Tb data – starting to go through, but will take time...


Inter-layer QA installed during assembly (16-bit, 50kHz acq)

28mm dia. warm bore QA with slant and asymmetric bucked windings

10/8/2025

Signals with 60 Hz filtering

24-bit, 200 kHz sampling DAQ

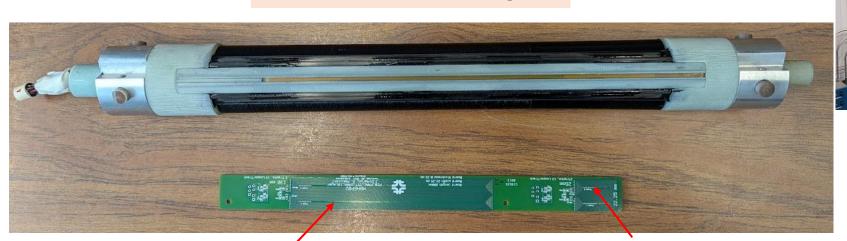
Second warm bore QA 16 tangential loops around 41mm diameter cylinder; 2layer pcb, 36 turns total

Magnetic Measurements @ 1.9 K (J. DiMarco)

Vertical

drive with

encoder


and slip

rings

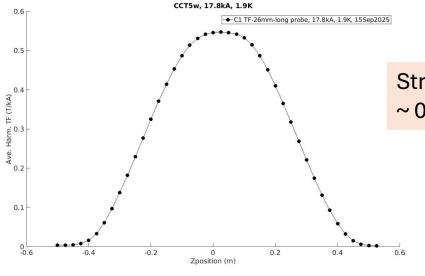
- Z-scan with 25mm steps z=[-0.5,0.5]
- Ramps to 17.8 kA with probe at Z=0 at 20, 40, 80 A/s
- 'Stair-step' measurements to 17.8 kA
- 'Accelerator profile' with injection porch at 960A

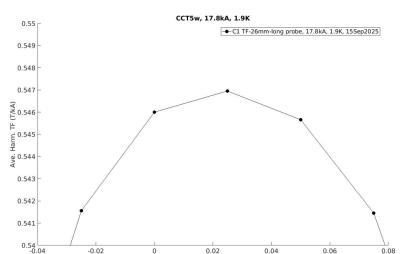
Stationary measurements used the 26mm long coil at Z=0, since the straight-section is very short

45 mm diameter rotating coil

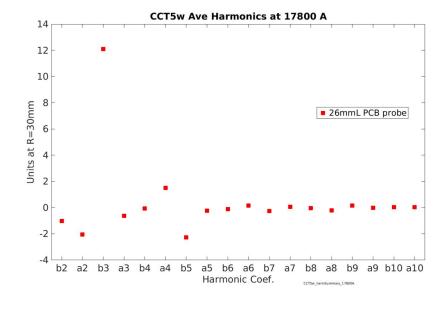
130mm-long coil

26mm-long coil





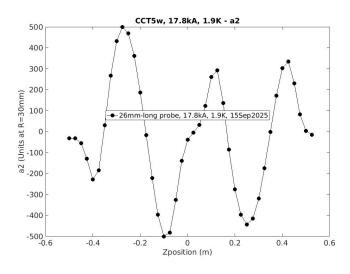
Magnetic Measurements @ 1.9 K (J. DiMarco)

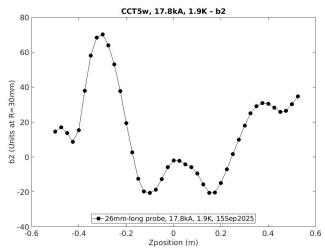


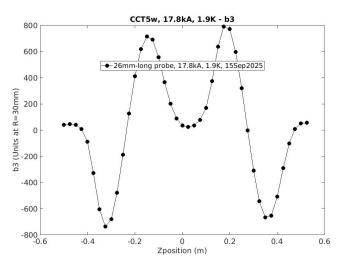
Strength Transfer Function ~ 0.547 T/kA

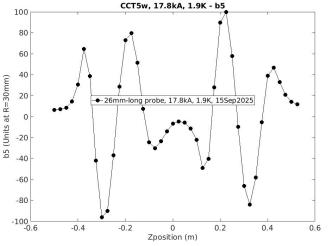
Z-scan at 17.8kA Magnetic field= 9.74T

Harmonics at center (0.02m position) < 5 units (except for b3 (normal sextupole))

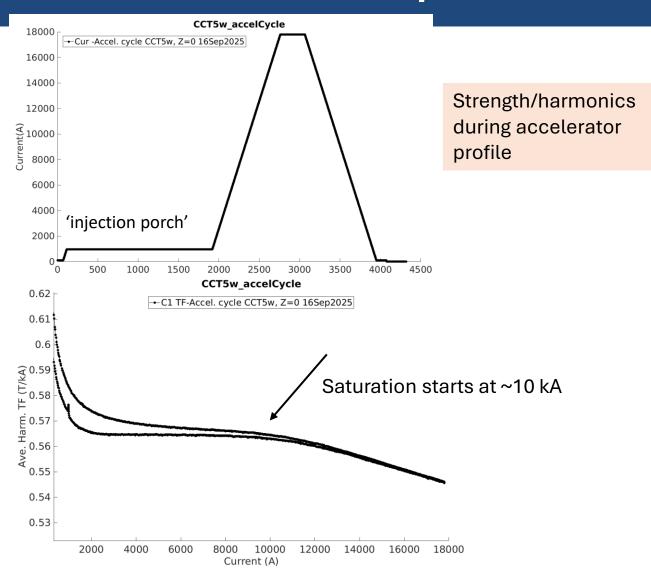


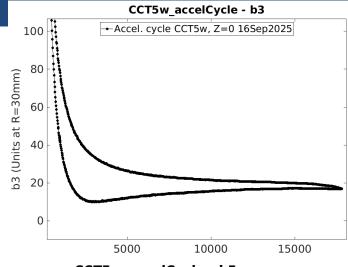


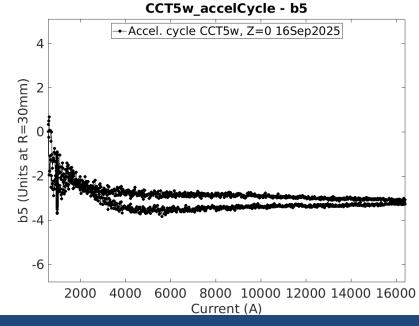

Zposition (m)


Magnetic Measurements @ 1.9 K (J. DiMarco)

End-field harmonics (most of the magnet!)







Accelerator profile @ 1.9 K (J. DiMarco)

Conclusions

- Allumina-filled wax large-aperture Nb₃Sn CCT magnet was designed and fabricated at LBLN.
- The magnet was successfully tested at 4.5 K and 1.9 K at Fermilab.
 - The first quench at 4.5 K has been observed at 93% of short sample limit
 - The first quench at 1.9 K has been observed at 88% of short sample limit
 - Magnet trained at 1.9 K then it developed a more erratic behavior.
 - Highest current reached at 1.9 K was 20.9 kA which corresponds to 104% of SSL.
 - Quenches in the outer layer were only observed at 1.9 K
 - A maximum bore field of ~9.74 T was measured at 17.8 kA.
 - Analysis of acoustic sensor, quench antenna and fiber data is ongoing.
 - Temperature dependence shows that the magnet behavior diverge from prediction at 1.9 K

ramp#	Quench #						
	20	14	17747		A10-A09		
	21	15	18342		A07-A06		
	22	16	18598		A08-A07		
	23	17	18221		A08-A07		
	24	18	18241		A10-A09		
	25						
	26	19	19091				
	27	20	18922		A08-A07		
	28	21	18879		A05-A04		
	29	22	18671		A05-A04		
	30	23	18923		A06_05		
	31	24	19390		A08_07		
	32	25	19083		A09 08		
	33	26	19224		A08-A07		
	34	27	19224		A05-A04		
			19427				B09_B08
	35	28			A07-A06	19525	
	36	29	19232		105 101		
	37	30	19334		A04-A03	-	
	38	31	19120		101 102	-	
	39	32	19679		A 0.7 A 0.C		
	40	33	19909				B04-B03
	41	34					B04-B03
	42	35				19590	
	48	36	20355		 A08-A07	-	
	49	37	18877		A05-A07	-	
	50	38	18467			-	 D10 D00
	51	39					B10-B09
	52	40				18542	B10-B09
	53	41	20187		A10-A09	-	
	54	42	20133		A06-A05	-	
	55	43	18865		A09-A08	-	
	56	44				20461	B06-B05
	59	46			A12-A10		
	60	47			A04-A03		
	61	48			A04-A03		
	62	49			A03-A02		
	63	50			A02-A01		
	64	51			A04-A03		
	65	52		20510	A04-A03		

81 66 18503 19470807_08 82 67 19470807_08 83 68 18847 A04-A03 19219804_03 85 70 18852 A04_03 19219804_03 86 71 19256 A10_09 19822803-802 87 72 19822803-802 88 73 20446805_04 89 74 18828808_07 90 75 19193 A05_04
82 67 19470807_08 83 68 18847 A04-A03 84 69 19219804_03 85 70 18852 A04_03 86 71 19256 A10_09 87 72 19822803-802 88 73 20446805_04 89 74 18828808_07
82 67 19470807_08 83 68 18847 A04-A03 84 69 19219804_03 85 70 18852 A04_03 86 71 19256 A10_09 87 72 19822803-802 88 73 20446805_04 89 74 18828808_07
83 68 18847 A04-A03 19219 B04_03 85 70 18852 A04_03 86 71 19256 A10_09 87 72 19822 B03-B02 88 73 20446 B05_04 89 74 18828 B08_07
84 69 19219804_03 85 70 18852A04_03 86 71 19256A10_09 87 72 19822803-802 88 73 20446805_04 89 74 18828808_07
85 70 18852 A04_03
86 71 19256 A 10_09 19822803-802 1982805-04 18828808_07
87 72 19822 803-802 88 73 20446 805_04 89 74 18828 808_07
88 73 20446805_04 89 74 18828 808_07
89 74 1882808_07
₉₀ ₇₅ ₁₉₁₉₃ A05_04
91 76 20434B08_07
92 77 20939A02_01
A02 02
94 79 18993 803_02
95 80 20312B04_03
96 81 19571805_04
99 84 19765B04_03

