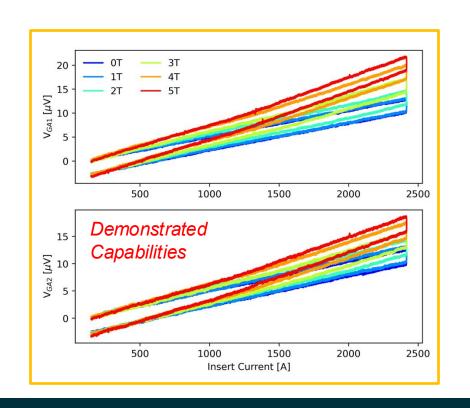


Test Facility Improvements – LBNL

Reed Teyber, Diego Arbelaez, Chet Spencer, Anjana Saravanan, Philip Mallon and MTF-U Team

Introductory Remarks


- MDP collaboration meeting gave overview of LBNL test facility
 - Due to budget, no real progress since then
- Todays slides serve to
 - Outline where we are today
 - Comments on first hybrid test
 - Comments on performance limiting issues
 - Key projects underway

Demonstrated Capabilities

- First LBNL dual powering test performed successfully up to 6 Tesla
 - From a facility point of view, this is an LTS-HTS hybrid test with a single turn insert dipole
 - Encouraging, clean insert data, very positive outcome despite challenges

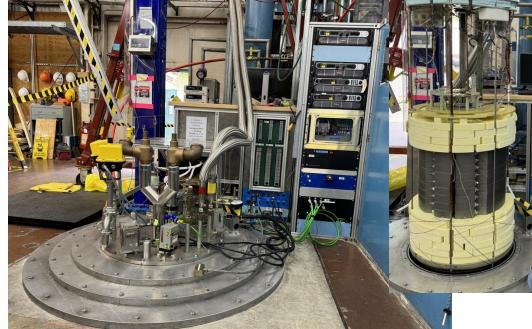
Facility – Dual Powering Circuits

IGBT temp & flow monitoring and interlock

cRIO PS control, quench detection, DAQ

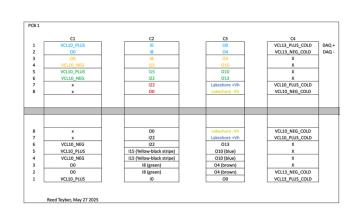
IGBT bus bars

Facility, main extraction rack / DAQ



CCT5 + GA Joint

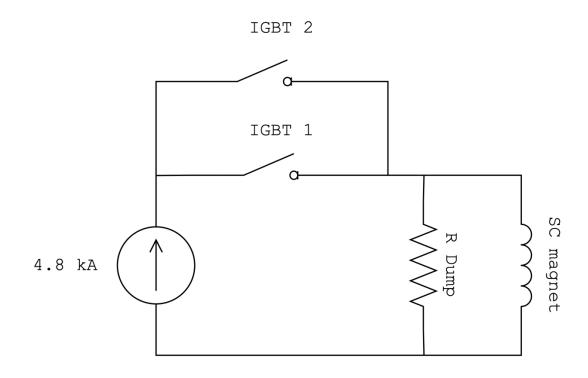
Header buildup, Insert power circuit

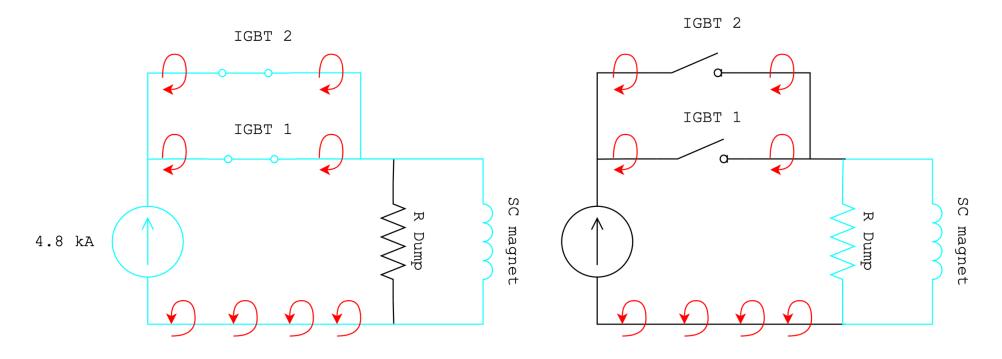


HM1 Test Prep

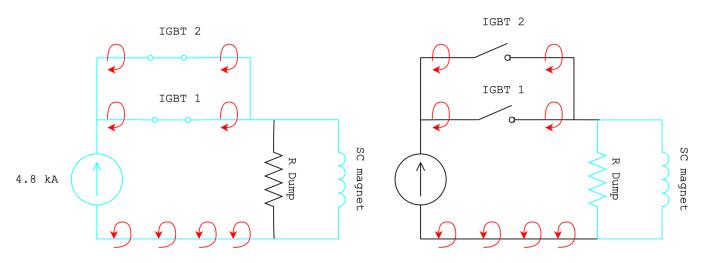
- HM1 is now on header, hope to test within ~2 months of access to funding
 - Still some controls / software / wiring to dial in for test
- Facility will limit background field
 - The HM1 test experience both the good and the inevitable bad is the best feedback to adjust our engineering direction
- Next slides will touch on this

Bundle Name	Bundle Source	Name	Тар	Iso?	Module	Channel	Card	Measured Range (+-)	Gain	Amp in range V	Amp out range V	DIP sw1	DIP sw2
Vtaps	Green + PCB Feed	Half +	VCI 10 Pos-O0	Adam	Mod 1	AI 0	9238	0.05	10	0.5	5	10100001	*00010000
Vtaps	Green + PCB Feed	Half -	O0-VCI 10 Neg	Adam	Mod 1	Al 1	9238	0.05	10	0.5	5	10100001	*00010000
Vtaps	Green + PCB Feed	full mag	10 Pos - VCI 10	Adam	Mod 1	Al 2	9238	0.05	10	0.5	5	10100001	*00010000
Vtaps	Green + PCB Feed	х	x	х	x	x	×	x	×	x	х	x	x
Vtaps	Green + PCB Feed	10-18		Adam	Mod 2	AI 0	9238	0.01	50	0.1	5	10100001	*00100000
Vtaps	Green + PCB Feed	18-115		Adam	Mod 2	Al 1	9238	0.01	50	0.1	5	10100001	*00100000
Vtaps	Green + PCB Feed	115-122		Adam	Mod 2	Al 2	9238	0.01	50	0.1	5	10100001	*00100000
Vtaps	Green + PCB Feed	122-02	splice	Adam	Mod 2	Al 3	9238	0.01	50	0.1	5	10100001	*00100000
Vtaps	Green + PCB Feed	00-04		Adam	Mod 3	Al 0	9238	0.01	50	0.1	5	10100001	*00100000
Vtaps	Green + PCB Feed	04-010		Adam	Mod 3	Al 1	9238	0.01	50	0.1	5	10100001	*00100000
Vtaps	Green + PCB Feed	O10-O13		Adam	Mod 3	Al 2	9238	0.01	50	0.1	5	10100001	*00100000
Vtaps	crow fly	B lakeshore		NO	Mod 3	Al 3	9238	NC	NC	NC	NC	NC	NC
Vtaps	crow fly	I Insert		NO	Mod 6	Al 0	9239	10	NC	NC	NC	NC	NC
Vtaps	crow fly	I Outsert		NO	Mod 6	Al 1	9239	10	NC	NC	NC	NC	NC
Vtaps	crow fly	CCT5 full scale full mag	9	Verivolt	Mod 6	Al 2	9239	500	0.02	500	10	Verivolt 500	Verivolt 50
Vtaps	crow fly	Insert full scale full mad	,	Verivolt	Mod 6	Al 3		500	0.02	500	10	Verivolt 500	Verivolt 50



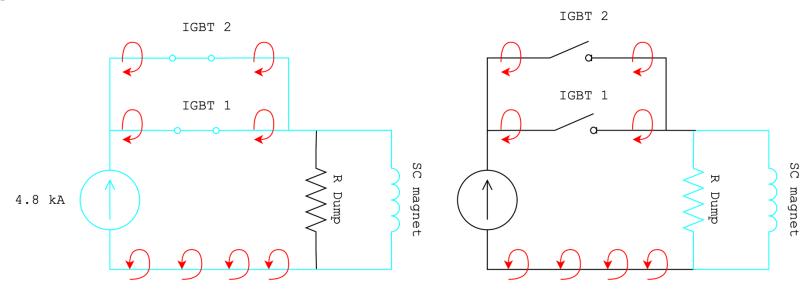

	C1	C2	C3	C4
ι	VCL13_PLUS	X	X	Lakeshore +100mA
2	(crow fly to warm flag)	x	x	Lakeshore -100mA
3	VCL13_NEG	X	X	X
1	(crow fly to warm flag)	X	X	X
5	VCL10_PLUS	X	X	X
5	(crow fly to warm flag)	X	X	X
7	VCL10_NEG	X	X	X
3	(crow fly to warm flag)	X	X	X
3				
	X VCL10 NEG COLD	X	X	X
5	X X	X	X	X X
5	VCL10 PLUS COLD	×		ı x
	X X	X	+ +	x
	VCL13 NEG	ı x	x	x x
	X X	×	1 x	Lakeshore -100mA
			x	Lakeshore +100mA
	VCL13_PLUS_COLD	X		

IGBT related issues

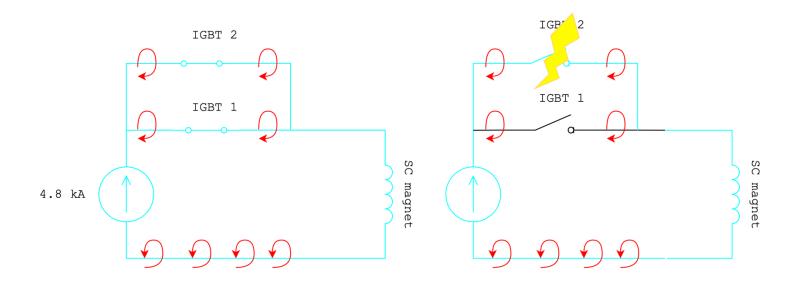

- Have had some unresolved issues with IGBT's
 - Consider overly-simplified schematic of Sorensen circuit



 Fast IGBT switching causes bus bar magnetic field to collapse – voltage spike

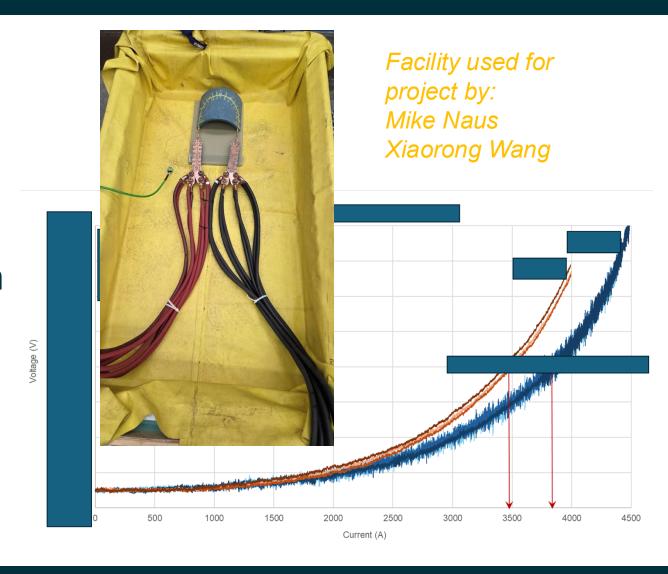


- We have implemented 2 iterations of snubbers -RC high pass filters but still have significant (short) voltage spike
 - Our comfort levels limit outsert field (should it?)
- Multiple paths forwards identified, should be solvable with sustained engineering effort
 - Most promising approach (capacitor bank) might mean un-winding significant administrative safety effort (WPC)



- Insert cRIO control loses communication when outsert extracts
 - More testing required to determine if related to dB/dt during extraction or disturbance of the ground potential
 - Technically this does not limit our ability to characterize inserts, but highly undesirable

- Someone dump resistor removed (visually intact), which was not removed after their testing
- Next test destroyed IGBT pair (from 10 -> 8 functioning IGBT's),
 which reduced current below what CCT5W required

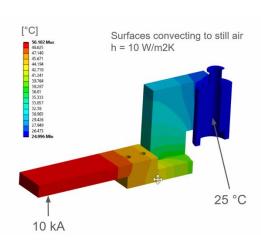


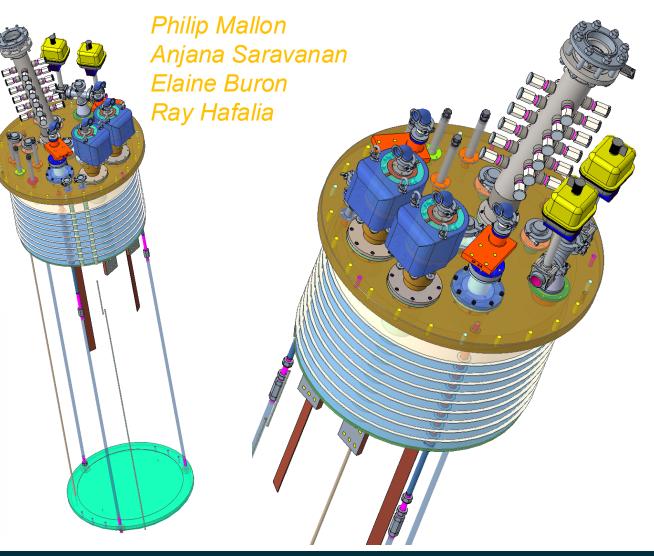
Future projects to highlight

- Following slides highlight priorities after HM1 test is complete
 - Continued cRIO control / quench detection system improvements
 - New 36" hybrid header with 20 kA vapor cooled leads
 - Replacement & engineering improvements of 10 IGBT's
 - Expansion of insert power supply system towards 8 kA
 - New liquefier
- Many more discussed projects (new LTS data acquisition et cetera) but should tackle current challenges before taking on more

Control Improvements

- A significant effort has gone into the insert cRIO FPGA data acquisition + power supply control + HTS quench detection system
- Continued improvements + development + using the system are valuable to hybrid testing effort
- Recently used system for ReBCO fusion cable testing up to 4.5 kA




36" Header

 We "repurposed" ports on our existing 32" header to allow 10 kA + 13.5 kA VCL's

 New 36" header needed for our new 20 kA VCL's

and CCT6

Sorensen Expansion

 We have additional power supplies, IGBT's and wall power to increase insert current (towards 8 kA)

New Liquefier

We will have a new liquefier

Power Supply Summary

Main PS

- limited ~~ 14 kA
 - VCL's 13.5 kA
 - 8 IGBT's 14 kA
 - Voltage spike (TBD)
- Planned ~20 kA
 - VCL's 20 kA
 - 10 upgraded IGBT's 20 kA
 - Improved snubber

Insert PS

- limited ~~ 4.8 kA
 - 4 parallel PSU's
 - VCL's 10 kA
 - 2 upgraded IGBT's 4.8 kA
- Planned ~~ 8 kA
 - 7 parallel PSU's
 - VCL's 10 kA
 - 4 upgraded IGBT's kA
 - Series diode-limited

Summary

- Funding has paused progress for many months
- Will test HM1 as quickly as possible, delaying any "invasive" facility projects
- After HM1, prioritize getting to high outsert and high insert current
 - New IGBT's to replace destroyed units
 - Engineering effort to mitigate switching voltage
 - New header to accommodate 20 kA VCL's (and CCT 6)
 - Expanded Sorensen power supplies for higher insert current
 - Continued development and integration of facility systems
- On a good trajectory, progress rate depending on available help