

U.S. MAGNET DEVELOPMENT PROGRAM

First field quality measurements of a 15 T Nb3Sn Dipole Demonstrator

September 24, 2019

Thomas Strauss

US Magnet Development Program

Outline

- Data collection
 - Measurement System
 - Measurement sensitivity
 - Centering Corrections
- Measurement discussion
 - Transfer Function
 - Loop
 - Z-scan
 - Harmonics from Stair Step
 - Accelerator Profile
 - Comparison with Simulation
 - Decay and Snapback
- Summary

Acknowledgement

- FNAL: A. Zlobin, E. Barzi, J. Carmichael, G. Chlachidze, J. DiMarco,
 V.V. Kashikhin, S. Krave, C. Orozco, S. Stoynev, T. Strauss,
 M. Tartaglia, D. Turrioni, G. Velev, A. Rusy, S. Jonhson, J. Karambis,
 J. McQueary, L. Ruiz, E. Garcia
- LBNL: S. Caspi, M. Juchno, M. Martchevskii
- CERN: D. Schoerling, D. Tommasini
- FEAC/UPATRAS: C. Kokkinos
- US-MDP: G6 and TAC

This work was supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and the US-MDP.

- Rotating Coil Measurement System at Fermilab Vertical Magnet Test Facility
 - 0.75 1 Hz rotation
 - Shaft with attached probe to scan 'warm bore' of the magnet, 3 m stroke
 - Two probes simultaneous in use, offset by 130 mm
 - 130 mm x 22.25 mm PCB probe (16 layers, 2 tracks, 13 Loops/track)
 - 26 mm x 22.25 mm PCB probe (16 layers, 2 tracks, 13 Loops/track)
 - Dipole bucked signal

100

26 mm Probe sensitivity ~ 0.1 units

Probe sensitivity b_n vs n

1500 A Stair step
2000 A Stair Step
4000 A Stair Step
6000 A Stair Step
8000 A Stair Step
9000 A Stair Step

Probe sensitivity a_n vs n

1500 A Stair step
2000 A Stair Step
4000 A Stair Step
6000 A Stair Step
8000 A Stair Step
9000 A Stair Step

Centering Correction not required

• a9 loop (26 mm probe)

higher order units versus current

Hysteresis feed-down from b₃

▲ b2 stair step (26 mm probe) ○ a2 stair step (26 mm probe)
 ◆ b2 loop (26 mm probe)
 ● a2 loop (26 mm probe)

• a8 loop (26 mm probe)

Transfer Function for multiple measurements

TF vs current - All measurements

Loop 40 A/s (130 mm probe) Loop 80 A/s (26 mm probe) - Loop 80 A/s (130 mm probe) × MBHSP02 (130 mm probe)

Loop measurements (20, 40, 80 A/s) Minimal dynamic effects

Conductor uses stainless core, reducing coupling currents

TF vs current for Loop measurements

b3, b5 and b9 vs current for Loop measurements

a3, a5, a7 and a9 vs current for Loop measurements

Z scan TF at 9 kA

z scan TF along center axis

• z scan 26 mm probe (fine) • z scan, 130 mm probe • z scan 26 mm probe

Z scan TF at 9kA, zoom

z scan TF along center axis

• z scan 26 mm probe (fine) • z scan 130 mm probe • z scan 26 mm probe

z scan harmonics along center axis

→b2 →b3 →b5

Z scan harmonics

z scan harmonics along center axis

→a2 **→**a3 **→**a5

Geometrical Harmonics

• Stair step, 26 mm probe

Geometric harmonics nearly identical in stair step and loop, small except for a2,a3,b2, and b3

current	B main	TF	b2	b	3 b	b4 b	5 b	6 1	o7	b8	b9		a2	á	a3	a4	a5	a6	a7	a8	a9	
1001	1.779	1.7	78	3.0	13.0	1.1	1.4	0.4	0.6	-C	0.2 0	3		-3.0	-5.2	-0.6	-C).2	-0.3	-0.1	-0.2	0.5
1501	2.662	1.7	73	1.9	10.2	0.3	1.0	0.2	0.9	-C	0.1 0	2		-2.7	-4.1	-0.1	. C	0.0	0.1	0.1	-0.3	0.3
2002	3.527	1.7	52	1.2	9.5	-0.1	0.7	0.2	1.0	0	0.0 0	2		-2.0	-3.7	0.1	. C	0.0	0.1	0.1	-0.2	0.2
2502	4.346	1.7	37	0.8	8.8	-0.4	0.7	0.1	1.0	0	0.0 0	2		-2.2	-3.5	0.3	s c).1	0.1	0.1	-0.1	0.2
3002	5.117	1.7	05	0.8	6.5	-0.5	0.6	0.1	1.1	. 0	0.1 0	2		-2.0	-3.5	0.4	. C).1	0.1	0.0	0.0	0.1
3496	5.849	1.6	73	0.8	4.4	-0.6	0.6	0.1	1.1	. 0	0.0 0	1		-1.9	-3.4	0.4	. C	0.0	0.2	0.0	0.0	0.1
4002	6.576	1.6	43	0.8	2.3	-0.7	0.5	0.0	1.2	. C	0.1 0	1		-1.8	-3.4	0.4	. C).1	0.1	-0.1	0.1	0.0
5002	2 7.953	1.5	90	1.0	-1.5	-0.8	0.3	0.0	1.2	. C	0.1 0	0		-1.6	-3.4	0.5	i C).1	0.1	0.0	0.0	0.0
6002	9.289	1.5	48	1.2	-4.7	-0.9	0.2	-0.1	1.2	. C	0.1 0	0		-1.4	-3.4	0.6	s c).1	0.1	0.0	0.0	0.0
7003	<mark>10.599</mark> 8	1.5	<mark>14</mark>	<mark>1.4</mark>	<mark>-7.4</mark>	<mark>-0.9</mark>	<mark>0.1</mark>	<mark>-0.1</mark>	<mark>1.3</mark>	C	<mark>).1</mark> 0	1		<mark>-1.3</mark>	<mark>-3.4</mark>	0.6	i C	<mark>).1</mark>	<mark>0.1</mark>	<mark>0.0</mark>	<mark>0.0</mark>	<mark>0.0</mark>
8003	11.894	1.4	36	1.6	-9.6	-1.0	-0.1	-0.1	1.3	с С	0.1 0	1		-1.2	-3.4	0.6	s c).2	0.1	0.0	0.0	0.0
9002	13.174	1.4	63	1.8	-11.5	-1.0	-0.2	-0.2	1.3	с С	0.1 0	1		-1.1	-3.4	0.7	C C).2	0.1	0.0	0.0	0.0
9502	13.810	1.4	53	2.0	-13.2	-1.0	-0.2	-0.2	1.3	с С	0.2 0	1		-1.0	-3.4	0.7	C C).2	0.1	0.0	-0.1	0.1

• Loop, 20 A/s, both probes, 130 mm offset in between

Loop 20 A/s 26 mm																	
1427	1.779	2.0	13.6	1.0	-0.7	-0.1	0.3	-0.5	1.1	-2.5	-5.5	0.6	-0.2	-0.1	0.0	-1.0	0.2
3530	1.671	0.8	4.4	-0.6	0.4	0.0	1.0	0.0	0.1	-2.0	-3.6	0.7	0.1	0.2	0.1	0.1	0.0
4992	1.590	1.0	-1.5	-0.8	0.3	-0.2	1.1	0.1	0.0	-1.7	-3.5	0.7	0.1	0.2	0.0	0.0	-0.2
<mark>6996</mark>	<mark>1.512</mark>	<mark>1.4</mark>	<mark>-7.6</mark>	<mark>-1.0</mark>	<mark>0.2</mark>	<mark>-0.2</mark>	<mark>1.4</mark>	<mark>0.1</mark>	<mark>-0.2</mark>	<mark>-1.4</mark>	<mark>-3.7</mark>	<mark>0.8</mark>	<mark>0.2</mark>	<mark>0.2</mark>	<mark>0.1</mark>	<mark>0.0</mark>	<mark>0.0</mark>
8996	1.462	1.8	-12.8	-1.0	0.0	-0.2	1.4	0.1	0.0	-1.1	-3.9	0.8	0.2	0.2	0.1	0.0	0.0
Loop 20 A/s 130 mm																	
1426.754	1.782	-3.1	11.7	-1.4	-1.9	-0.1	0.5	0.2	0.9	-2.5	-2.3	2.8	0.8	0.0	-0.2	-0.6	0.0
3530.193	1.673	-2.6	6.4	-1.6	-1.1	0.0	0.6	0.1	0.1	-2.3	-2.1	2.2	1.1	0.1	0.0	0.0	0.0
4991.803	1.591	-2.0	-0.1	-1.8	-1.1	-0.1	0.7	0.1	0.0	-1.9	-2.5	2.3	1.2	0.1	0.0	-0.1	0.0
6996.030	1.514	-1.2	-7.2	-1.8	-1.3	-0.1	0.7	0.2	0.0	-1.5	-3.0	2.4	1.2	0.1	0.1	-0.1	0.0
8995.939	1.463	-0.6	-13.6	-1.9	-1.4	-0.1	0.8	0.2	0.0	-1.0	-3.4	2.4	1.3	0.2	0.0	-0.1	0.0

Transfer Function

Office of

Science

DEPARTMENT OF

b₃ versus dipole field

b₃ versus field

b3 Loop (26 mm probe)
 b3 Loop (130 mm probe)

17

b_5 versus dipole field

Decay and Snapback

B3 versus time

Snapback

B3 versus time

Maximum Field Achieved

- Magnet *TF* and low-order field harmonics were measured using 26 mm and 130 mm long rotating coils in the field range up to ~14 T.
- The measurements included geometrical components and contributions from the coil magnetization and iron yoke saturation effects.
- All the measured geometrical harmonics, except for a₂, a₃, b₂, b₃, are small, on the level of 1 unit or less at R_{ref}=17 mm.
- The coil magnetization effect in MDPCT1 at low fields is large due to the high critical current density and relatively large sub-element size in the contemporary Nb₃Sn strands.
- The iron yoke saturation effect in MDPCT1 starts at fields above 2.5 T and is also large.
- Both coil magnetization and iron saturation effects are in good agreement with theoretical predictions for TF and b3
- The eddy current effect in the cable on the *TF* and field harmonics in MDPCT1 was suppressed by using a stainless-steel core inside the cables.

 We thank the technical staff of FNAL APS-TD for contributions to magnet design, fabrication and test, and US-MDP Management Group and Technical Advisory Committee for the support of this project.

• We thank GMW (<u>www.gmw.com</u>) for providing us with a Metrolab 1226 8-22T NMR probe for our PT2026 Teslameter

