LBNL RC7n8, the first 4.7 T Bi-2212 dipole magnet

Tengming Shen

Lawrence Berkeley National Laboratory

Sept 11, 2019

Work supported by the U.S. DOE OHEP through the U.S. Magnet Development Program, and with collaboration with the NHMFL Bi-2212 group, Bruker OST, nGimat (now Engi-Mat) which is supported by U.S. DOE SBIR grants and other sources.

Moving beyond RC1-6: Towards using fully twisted, larger-billet wires and generating practical dipole field

- RC1-6 (2-layer, 6-turn/layer, 17-strand Rutherford cable) made from non-twisted wire as degradation found in twisted wires in 2016.
 - Field with RC6 3.5 T.
- RC7 and RC8 made from twisted wires CDP PMM180207 (10 kg billet, 2.4 km conductor, 0.8 mm, Engi-Mat powder)
 - No degradation due to twisting found in short strands (Bruker OST + J. Jiang FSU).
 - Larger coil winding (2-layer, 11-turn/layer, 17strand Rutherford cable)

RC7 and RC8 were assembled using the LBNL bladder-and-key technology and powered as a common coil dipole

RC7n8, the first 4.7 T Bi-2212 dipole magnet

• Two dipole field in one common-coil structure.

4.7 T, 5.7 kA.

Iron yoke

and pad

• Pole gap – 6 mm

Surface contours: E

4.708355E+00

4.000000E+00

- 3.500000E+00

- 3.000000E+00

- 2.500000E+00

- 2.000000E+00

- 1.500000E+00

1.000000E+00

- 5.000000E-01

1.211896E-04

RC 7 – Before reaction.

11

RC 7 – After reaction.

Stable, predictable, training-free operation found in RC1-6 verified in RC7n8

- No quench training.
- Thermal runaway quenches due to approaching conductor $I_{\rm c}$.
- Different from LTS and REBCO, quenches are non-localized and their locations are predictable.
- Strong and clear signals measured by high-resolution voltage measurements indicating at what current quenches would occur, before any of thermal runaway quenches actually occur.

Overall comments

- The first 4.7 T Bi-2212 dipole.
 - A practical magnet suitable for particle beam bending with stable, predictable, quench training free behavior.
 - Complete the wire development cycle with a fully twisted, large industry Bi-2212 wire billet.
 - Wire $J_e = ~670 \text{ A/mm}^2$ at 5 T and ~450 A/mm² at 20 T (extrapolated).

- Wire fabrication and characterization: Yibing Huang (Bruker OST), Aixia Xu (nGimat LLC), Jianyi Jiang (NHMFL)
- Cable fab: Ian Pong, Andy Lin, Hugh Higley.
- Coil fabrication: Hugh Higley, Tim Bogdanof, Tengming Shen
- Coil reaction: Ernesto Bosque (NHMFL) and Lamar English (NHMFL)
- Mechanical Assembly: Jim Swanson, Josh Herrera, Daniel Davis (NHMFL+LBNL), Tengming Shen
- Test: Marcos Tuerqueti, Jordan Taylor, Tim Bogdanof, Tengming Shen
- Magnetic and mechanical analysis: Laura Garcia Fajardo and Kai Zhang (now at PSI)
- Bladders used: Courtesy of Daniel Cheng

