US MDP epoxy resin research at LBNL – an update

Tengming Shen

Lawrence Berkeley National Laboratory

- A theory of quench training in Nb₃Sn accelerator magnets and implications.
- Some relevant work at LBNL.

Understanding RT properties of epoxy resins for superconducting magnets

Figure 2 Room temperature property trends vs. T_g > test temperature for amine-cured epoxy resins.

A rather unfortunate truth: Even the high toughness epoxy with large elongation at break at RT becomes brittle at <77 K

The resin tested is a variant of the ATLAS ECT.

- Compression tests of NHMFL-mix 61, CTD-101K were given by Theo Tervoort at ICMC 2019.
- Plenty of evidence of NHMFL-mix61 cracking at 4 K given by Nb₃Sn CCT subscale magnets and CCT5 (systematic microscopy images by Diego Arbelaez).

The work of fracture differs

Work of fracture and cracking index data from D. Evans, ICMC2019. RAL-71A (POPDA hardener – the toughest epoxy for cryogenic uses – David Evans)

Micro-cracking predicted at the pole turn of a cosine-theta Nb₃Sn magnet

, inside the Rutherford cable, between strands, at 4 K and when the magnet is powered.

Ti-alloy pole

HQ-CO6, Hugh Higley

Neat resin, as large as 0.4 mm

Stored energy $\frac{\sigma^2 h}{4E}$

@4K and when excited to >0.7 SSL

- As large as 449 J/m², at the pole turn (coil $\sigma_{\theta} \sim 0$)
- Much smaller (38-81 J/m²) at the midplane (coil $\sigma_{\theta} \sim -150 MPa$)

Credits to Akira Yamamoto for initially raising questions about controlling cracking of epoxy between strands inside a Rutherford cable.

- Large volumes with neat resins.
- Store energy even larger than 449 J/m² (4 K and powered, coil $\sigma_{\theta} \sim 0$)

Let's be generous and assume this theory is right, what are implications?

- Training would depend on the amount of prestress coil received, and prestress sequences (in related to cooling).
 - Prestress would help reduce training for CCT magnets?
- Training would depend on the packing factor of the Rutherford cable.
- Even the toughest epoxy Evans knows would still crack (inside the Rutherford cable).
- Beneficial to add inorganic particles inside the Rutherford cable, but what and how?

Reducing CTE of epoxy, and increasing toughness, with inorganic nanoparticles fillers – an issue

Epoxy/BN 2D nanoplates, after mixing

50 $^{\circ}C/12$ h, particle segregation

Work by Shijian Yin at LBNL.

An approach developed to fix the issue: Using aeroxide to reduce Van der Waals forces between particles

LBNL teams up with CTD with a new phase II SBIR to develop and verify advanced epoxy for superconducting accelerator magnets

Andrea Haight (PI), Mark Haynes, Nicole Thomas

- LBNL responsibilities
 - (Help select) test and verify three advanced epoxy formulations, using the Nb₃Sn CCT subscale magnet as the primary test bed, and other experimental tests and modeling, for superconducting accelerator magnet uses.

High toughness epoxy development at CTD, Inc.

• Toughening approaches based on CTD's prior work with high strain resin systems for cryogenic tank applications

Name	Description
CTD-101K	Baseline anhydride-cured epoxy resin used in HEP magnets
CTD-103K2	Long pot life 2-part formulation with performance similar to CTD- 101K
CTD-103LT	Lightly toughened version of CTD-103K2
CTD-155	Anhydride-cured epoxy resin with reactive rubber toughener
CTD-7.1E	Low viscosity, toughened amine-cured epoxy resin
CTD-701X	Extremely low viscosity, tough polyolefin resin system

Processability of Toughened Formulations

 Toughening approaches based on CTD's prior work with high strain resin systems for cryogenic tank applications

Description	T _g (tan δ)	Viscosity @ 60°C (cP)	
		Initial	7 hours
CTD-101K	150 (avg QA)		
CTD-103K2	141	61	61.5 (4.5 hr)
CTD-103LT	126	24	71
CTD-155	147	125	127
CTD-701X	131	25 (@ 25°C)	70 (90 min, 25°C)
CTD-7.1E (tank formulation)	72	225	Not determined

CTD-701X shows high elongation at break at 77 K

- All epoxy resins showed similar performance
- CTD-701X slightly lower, not unexpected

• ASTM D638

- Toughening approaches in epoxy most effective at room temperature
- CTD-701X shows high elongation, even at 77K

CTD-701x has compressive strength, flexural modulus and dielectric strength comparable to CTD-101K.

C

Science

15

Collaborating with KEK to run Irradiation tests

- 10 MGy and 20 MGy samples at QST.
- 100 MGy experimental time secured for 2019/2020, and samples prepared.

● **KEK** 大学共同利用機関法人 高エネルギー加速器研究機構

Toru Ogitsu

Summary

- Existing theories of quench training in Nb₃Sn accelerator magnets.
 - Serrated yielding behaviors causing jerky strand movement.
 - S-2 fiber cracking.
 - Bond failures: Insufficient pre-stress leads to pole turn separating from the pole.
 - Bond failures: Stick-slip of cable at the end of a CT magnet and a CCT magnet.
- A theory of a key contributor to quench training in Nb₃Sn accelerator magnets and implications.
- Two collaborations: (with CTD Inc) Verifying advanced epoxy formulations for superconducting accelerator magnets; (with KEK) irradiation toughness of epoxy with gamma-ray irradiation.

