LLNL Progress and Plans

Aaron Angerami and Ron Soltz Meeting of the University of California Consortium for EIC physics LBNL, September 18, 2019

LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

LLNL Heavy Ion Group: Personnel

- Supported through a combination of LDRD, DOE NP/HEP, and NSF
- Currently two staff scientists:
 - Soltz: sPHENIX and Jetscape, also group leader for NPP
 - Angerami: ATLAS and sPHENIX
- Have multiple openings for postdocs looking to fill ASAP
 - Hope to have two new group members by the next meeting of this consortium!
- Opportunities for students to come to LLNL for a period
 - Both graduate and undergraduate

LLNL Heavy Ion Group: Interests and expertise

- Physics interests
 - Jet quenching phenomena: especially jet substructure and quantifying the role of coherence in energy loss
 - Ultra-peripheral collisions
- Technical interests
 - Jet measurements: reconstruction, calibration and uncertainties
 - Applying models to data (including uncertainties) to draw quantitative conclusions
 - Applications of high performance computing and machine learning to all aspects of HI program (reconstruction, simulation, modeling and calibration)

LLNL Heavy Ion Group: Progress

- LLNL deliverable: supervision a student from UCB for summer
 - Fernando Torales-Acosta
 - Studies of jet performance in sPHENIX
 - Apply method used by ATLAS and CMS for MC-based jet energy scale calibration

LLNL Heavy Ion Group: Progress and future directions

- As part of our involvement with ATLAS and sPHENIX, looking to apply LLNLs computing resources
 - Testing of sPHENIX and ATLAS workflows on HPC resources
 - New LDRD starting FY20 to apply ML methods to improve ATLAS calorimeter clustering
 - Use of neural network calibrating hadronic response based on high-dimensional input: showers as images

- We expect to continue developing these capabilities
 - Ready to jump on any applications for EIC although all indications are that computing resource requirements for the EIC will be significantly less than those of RHIC or the LHC.