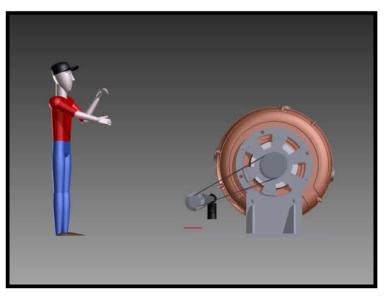

Electropolishing on MICE 201 cavity at LBNL


Tianhuan Luo, Universtiy of Mississippi For 805 MHz modular cavity review at SLAC, Oct 2012.

Electropolishing (EP)

- Copper cavity breakdown in high magnetic field. Several different explanations, but all related to the field emission electrons.
- Smoother surface -> less field enhancement & less field emission electrons.
- EP: electrolytic removal of metal in a highly ionic solution by means of an electrical potential and current. How exactly does it work? Not fully understood yet.
- EP widely used in SRF for surface treatment. Shining surface with roughness of hundreds to tens of nm.

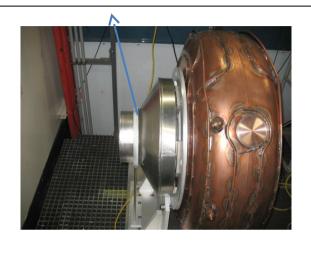
EP procedure

- Mechanical polishing
 - Smooth surface fairly and remove any defects that can't be addressed by EP.

Preclean

 Remove dust & grease by rinsing water, brushing with D909 cleanner and dried with compressed air/ nitrogen gas

EP

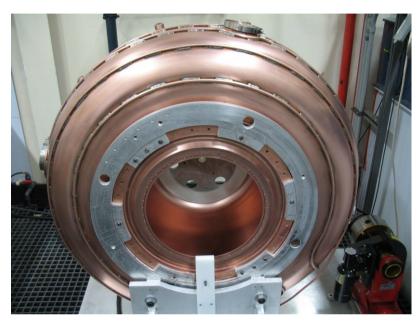

- Pre-inspect: leakage , grounding loop, etc.
- Install U-shape cathode, pump in Power Kleen 500 EP solution.
- Rotate and wet the cavity thoughrouly, deoxidize the copper.
- Turn on the rectifier and set voltage at 7 Volts, rotate the cavity until the desired surface finish is achieved.
- Pump out solution fast, clean and pack.

EP Setup


Ducting

Electrolyte

Cone shape exhausting hood




D909 Cleaner

Hydrogen gas Monitor

Compressed air purge

EP Result

Bright Dip?

- Bright dip (BD), or chemical buffering process (CBP), is an electroless surface polishing process.
- Mild and slow chemical process, easier and safer to control.
- Need a very fine hand polishing before the BD.

Bath	SN6	SN2	SN10
C _{H2SO4} (M)	5.8	7.7	4.8
C _{HNO3} (M)	0.87	1.15	0.72
C _{HCl} (M)	1.610-2	1.010-2	1.310-2
C _{CuS04} (M)/EDTA*	0.3	0.24	0.1/0.2
(M)			
θ (°C)	25	35	23
Etching duration	105	40	60
(min.)			
Removed layer	450	150	50
(μm)			
Roughness Ra	0.10	0.025	0.015
(μm)			

"DETERMINATION OF NIOBIUM FILMS SURFACE RESISTANCE BY A CALORIMETRIC METHOD"

M. Fouaidy, etc

Sample Test



Table 1: Profilometer Measurements of the Roughness Average (RA) of OFHC sample plates.

Sample	Just HP	HP with EP	HP with BD
RA (μm)	0.140	0.537	0.108

EndThanks!