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Nuclear astrophysics and Wick's influence

Example: the 90s and supernovae

e The neutrino process: discovered a new nucleosynthesis process in
the outer layers of the supernova due to neutrino-induced
spallation on nuclei of neutrons and protons. Woosley et al 1990

e r-process nucleosynthesis: proposed a molding of the abundance

pattern due to neutrino induced spallation on nuclei. Haxton et al
1997



Lead as a supernova neutrino detector
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A supernova lead detector now exists: HALO at SNOLAB



Where is the nuclear physics

in neutron star mergers?

Multimessenger: electromagnetic counterpart (r-process), neutrinos,
gravitational waves (equation of state)



First, some background on the r-process




solar abundances: one way to study the r-process
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r-process in Halo Stars: a second way
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Ultra faint dwarf galaxies: a third way
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Electromagnetic counterpart to

the neutron star merger GW signal

Kilonova SSS17a bolometric light curve
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Material with significant opacity is the best fit to the data siie credit: Dan
kasan SUggests lanthanides were made in the r-process.



Where are the lanthanides?
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This gives a hint about the r-process

107

T
107 L “ :

10t

(YAl

Log Abundance

10-5 | | | | | | |
60 a0 100 120 140 160 180 200 220

Atomic Mass (A)

If lanthanides are required to fit the electromagnetic counterpart, then

at least some r-process was synthesized in this merger.



Status of the interpretation of observations:

A few points

e halo star data: rare earths made with third peak (at least

sometimes)

e ultra-faint dwarfs: rare earths made in a rare event (at least one)

e EM counterpart to GW: models with rare earths preferred because

of opacity

rare earths = lanthanides



A couple open questions regarding the r-process

e How many r-process sites are there? Are neutron star mergers the
only one? Do mergers make any material beyond the lanthanides?

e \What can nuclear physics tell us?



Some roles that nuclear physics plays




Some roles that nuclear physics plays

nuclear structure/reactions determine the abundance pattern




Nuclear structure, reactions determine abundances
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Nuclear physics is one of the largest uncertainties in r-process predictions. Slide credit: FIRE collaboration



Uncertainty from one mass model
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Some roles that nuclear physics plays

nuclear structure/reactions determine the heating for the EM

counterpart




Nuclear reactions determine energy release
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Some roles that nuclear physics plays

Nuclear physics influences the light curve




Nuclear physics uncertainty propagates to

deduced ejecta mass
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taken into account.



Some roles that nuclear physics plays

decays of particular nuclei influence the light curve in an observable

way




Fission of 254Cf changes the heating curve
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fig. from Zhu et al 2018. The FIRE collaboration isolated the extra heating to come largely from a single nucleus.
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Some roles that nuclear physics plays

most of the relevant nuclei are unmeasured/off stability, but we have

new opportunities on the horizon




experiment-theory collaboration

Which nuclear measurements, working in concert with theory, will
provide the maximum information about the site of the r-process?
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Example: solar abundance data with the rare earth peak in red. The rare earth peak is created by a nuclear physics feature. We

predict this feature, and find different results for different astrophysical conditions.



Using MCMC to predict the feature

Mass surface for “hot” conditions
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Some roles that nuclear physics plays

neutrinos influence the ratio of neutrons to protons
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How neutrinos influence nucleosynthesis

Neutrinos change the ratio of neutrons to protons

Ve +t N —pt+e

Ve +p—nitetr



So different neutrino spectra

affects the elements produced
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Some roles that nuclear/neutrino physics plays

neutrinos flavor transform




Neutrino flavor transformation

alters the numbers of neutrons and protons

Neutrinos change the ratio of neutrons to protons
Ve + M — D+ €
Vo +p—niter
Oscillations change the spectra of v.s and 7.s
Ve < Uy, Vs
Ue <5 Uy, Uy
Mergers have less v, v, than v, and 7,

— oscillation reduces numbers of v,, U,



Neutrino flavor transformation in mergers
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Three new developments on
neutrino flavor transformation in mergers

1. GR estimates of neutrino fields
2. Multiangle techniques

3. Quantum kinetics: collisions



Merger oscillations: survival probabilities

Using general relativistic ray-tracing to generate more accurate

neutrino fields, with angular information, above two merging neutron

stars
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Multi-angle survival probabilities

First multi-angle calculations of merger-type distributions in a bulb

model
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First evolution of quantum kinetic equations

Isotropic homogeneous slab, neutrinos begin in mixed initial state,
collisions reduce, redistribute phase. QKE collision terms now in NulLib.
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Conclusions

Observations of neutron star mergers are a cutting edge tool for
enriching nuclear physics.

e r-process: theory and experiment
e neutrinos: quantum kinetics
e equation of state constraints

There is a community that recognizes this opportunity, and many in
this community were strongy influenced by Wick's leadership in nuclear

astrophysics.



