Testing Conservation Principles via Neutrinoless Double Beta Decay

Haxton and Stephenson, Prog. in Part. Nucl. Phys. **12** 409 (1984).

Haxton, Stephenson, and Strottman, PRL 47 153 1981

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

TUNL

J.F. Wilkerson

Looking for v physics on Earth and in the Cosmos Wick Haxton Symposium

LBL, Berkeley, CA January 7, 2020

Haxton, Rosen, and Stephenson, PRD 26 2360 (1982)

2*v* double-beta decay (2*v* $\beta\beta$): Nucleus (A, Z) \rightarrow Nucleus (A, Z+2) + e^2 + v^2 + e^2 + v^2

Allowed second-order weak process Maria Goeppert-Mayer (1935)

2*v* double-beta decay (2*v* $\beta\beta$): Nucleus (A, Z) \rightarrow Nucleus (A, Z+2) + e^2 + v^2 + e^2 + v^2

Allowed second-order weak process Maria Goeppert-Mayer (1935)

Ettore Majorana (1937) realized symmetry properties of Dirac's theory allowed the possibility for electrically neutral spin-1/2 fermions to be their own anti-particle

2v double-beta decay ($2v\beta\beta$): Nucleus (A, Z) \rightarrow Nucleus (A, Z+2) + e^2 + \overline{v} + e^2 + \overline{v}

0*v* double-beta decay ($0v\beta\beta$): Nucleus (A, Z) \rightarrow Nucleus (A, Z+2) + e^{-} + e^{-}

Ettore Majorana (1937) realized symmetry properties of Dirac's theory allowed the possibility for electrically neutral spin-1/2 fermions to be their own anti-particle

Racah (1937)

 $n \rightarrow p + e^{-} + \overline{v}$

 $v + n \rightarrow p + e^{-}$

2v double-beta decay ($2v\beta\beta$): Nucleus (A, Z) \rightarrow Nucleus (A, Z+2) + e^2 + \overline{v} + e^2 + \overline{v}

0*v* **double-beta decay (** $0v\beta\beta$ **):** Nucleus (A, Z) \rightarrow Nucleus (A, Z+2) + e^{-} + e^{-}

Ettore Majorana (1937) realized symmetry properties of Dirac's theory allowed the possibility for electrically neutral spin-1/2 fermions to be their own anti-particle

0vββ Signature and Searches (before 1957)

Theory

- 0vββ significantly favored, 10⁵ 10⁶, over 2vββ based on decay phase-space
- Observation of $2\nu\beta\beta$ with no $0\nu\beta\beta$ thought to rule out Majorana neutrinos.

0vββ Signature and Searches (before 1957)

Theory

- 0vββ significantly favored, 10⁵ 10⁶, over 2vββ based on decay phase-space
- Observation of 2vββ with no 0vββ thought to rule out Majorana neutrinos.

Searches

- First search in 1948, E.L. Fireman in ¹²⁴Sn
- Relatively sparse measurements (18 papers)
- Methods : coincidence counters, cloud chambers, photographic emulsions, one geochemical (¹³⁰Te)
- $\beta\beta$ positive $T_{1/2}$ claim from geochemical

- 130 Te ~ 1.4×10^{21} y

- $0\nu\beta\beta$ positive $T_{1/2}$ claims from detectors
 - ⁴⁸Ca ~ 10¹⁷ y
 - $^{124}Sn \sim 10^{16} y$
 - motivated additional measurements in both isotopes that ruled out claims.
- $0\nu\beta\beta$ most sensitive $T_{1/2}$ limits
 - ${}^{48}Ca > 2 \times 10^{18} \text{ y}$
 - $^{124}\text{Sn} > 1.5 \times 10^{17} \text{ y}$
 - $^{150}Nd > 2.2 \times 10^{18} y$

Parity Violation and v helicity (1957)

PHYSICAL REVIEW

VOLUME 104. NUMBER 1

OCTOBER 1, 1956

Question of Parity Conservation in Weak Interactions*

T. D. LEE, Columbia University, New York, New York

AND

C. N. YANG, Brookhaven National Laboratory, Upton, New York (Received June 22, 1956)

The question of parity conservation in β decays and in hyperon and meson decays is examined. Possible experiments are suggested which might test parity conservation in these interactions.

Experimental Test of Parity Conservation in Beta Decay*

C. S. WU, Columbia University, New York, New York

AND

E. AMBLER, R. W. HAYWARD, D. D. HOPPES, AND R. P. HUDSON, National Bureau of Standards, Washington, D. C. (Received January 15, 1957)

TN a recent paper¹ on the question of parity in weak I interactions, Lee and Yang critically surveyed the experimental information concerning this question and reached the conclusion that there is no existing evidence either to support or to refute parity conservation in weak interactions. They proposed a number of experiments on beta decays and hyperon and meson decays which would provide the necessary evidence for parity conservation

Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: the Magnetic Moment of the Free Muon*

> RICHARD L. GARWIN, † LEON M. LEDERMAN, AND MARCEL WEINFICH Physics Department, Nexis Cyclotron Laboratories, Columbia University, Irvington-on-Hudson, New York, New York (Received January 15, 1957)

Testing Conservation Principles via 0vββ J.F. Wilkerson

M. GOLDHABER, L. GRODZINS, AND A. W. SUNYAR Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

COMBINED analysis of circular polarization and A resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with Eu152m, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme,1 0-, we find that the neutrino is "left-handed," i.e., $\sigma_r \cdot \hat{p}_r = -1$ (negative helicity).

Haxton Symposium LBL, January 7, 2020

Implications for $\beta\beta$ -decay (1959)

Primakoff and Rosen Rep. Prog. Phys. 22 121 (1959)

$$H_{\mathrm{M}} = \sum_{\lambda} \left(\psi_{\mathrm{p}}^{\dagger} \Gamma^{(\lambda)} \psi_{\mathrm{n}} \right) F_{\lambda}$$

- with potential contributions from S,T, V, and A interactions.
- Assumed massless neutrino
- handed helicity states) then no neutrinoless double-beta decay.
- interaction. (Allowed by the existing experimental constraints.)
- structure, average separation between neutrons

$(\psi_{A}^{\dagger} \Gamma^{(\lambda)}(1 + \epsilon_{\lambda} \gamma_{5}) \phi_{\nu}) + \text{h.c.}$

• Initially considered most general, Lorentz invariant Hamiltonian -- included the possibility of both L-conserving and L-violating interactions, P-conserving and P-violating terms, along

• Recognized that with a "two-component" neutrino coupling (emitted in pure left or right

• Calculated both 2vββ and 0vββ-decay rates. For 0vββ assumed a predominately V-A and Pviolating interaction, but also some amount of parity-conserving, lepton-violating scalar

• Utilized closure method to account for the Nuclear Processes in calculating rates - nuclear

Implications for $\beta\beta$ -decay (1959)

Primakoff and Rosen Rep. Prog. Phys. 22 121 (1959)

Conclusions

- Observation of $2\nu\beta\beta$ tells one nothing about Dirac/Majorana nature of v. • Possible to have Majorana neutrinos, but a pure "two component" parity-
- violating interaction would not allow one to observe $0\nu\beta\beta$.
- Calculated $T_{1/2}$ for $2\nu\beta\beta$ -decays on order of 10^{20} to 10^{22} years (with factor of 100 uncertainties)
- Calculated $T_{1/2}$ for $0\nu\beta\beta$ -decays on order of 10^{15} to 10^{16} years, with assumption that $|F_S/F_v|^2 \le 1/3$. (assume non-zero scaler coupling constant)

0vββ Signature and Searches (1958-1980)

Theory

- "wrong-handed helicity" significantly suppresses $0\nu\beta\beta$ compared to $2\nu\beta\beta$
- Observation of $2\nu\beta\beta$ does not provide information on Majorana nature of neutrinos.
- No strong experimental evidence for neutrinos to have non-zero mass.
- No strong theoretical justification for LNV.

Testing Conservation Principles via 0vββ J.F. Wilkerson

0vββ Signature and Searches (1958-1980)

Theory

- "wrong-handed helicity" significantly suppresses $0\nu\beta\beta$ compared to $2\nu\beta\beta$
- Observation of $2\nu\beta\beta$ does not provide information on Majorana nature of neutrinos.
- No strong experimental evidence for neutrinos to have non-zero mass.
- No strong theoretical justification for LNV.

Testing Conservation Principles via 0vββ J.F. Wilkerson

Searches

- Only a small group of experimentalist doing searches
- Geochemical measurements (15 papers)
 - $^{130}\text{Te} \sim 10^{21} \text{ y}$ (and ratio of $^{130}\text{Te}/^{128}\text{Te}$)
 - ${}^{82}Se \sim 10^{20} \text{ y}$
- Improved ⁴⁸Ca searches (7 papers, last paper 1970) - $0\nu\beta\beta > 2 \times 10^{21}$ y; $2\nu\beta\beta > 3.6 \times 10^{19}$
- ⁷⁶Ge searches with Ge(Li) (Fiorini 3 papers)
 - $0\nu\beta\beta > 5 \times 10^{21}$ y
- ⁸²Se searches (particle detectors)
 - $0\nu\beta\beta > 3.1 \times 10^{21} \text{ y}$ (Cleveland 1975)
 - $2\nu\beta\beta > (1\pm0.4) \times 10^{19}$ y (Moe 1980)
- Other isotopes
 - $^{130}\text{Te} \quad 0\nu\beta\beta > 1.2 \times 10^{21} \text{ y}$
 - ¹⁵⁰Nd $0\nu\beta\beta > 7 \times 10^{18}$ y; $2\nu\beta\beta > 5 \times 10^{18}$

Haxton Symposium LBL, January 7, 2020

Conservation Principles & New Expt. Results (early 1980s)

BARYON NUMBER AND LEPTON NUMBER CONSERVATION LAWS

Henry Primakoff Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

S. Peter Rosen Department of Physics, Purdue University, West Lafayette, Indiana 47907

Ann. Rev. Nucl. Part. Sci. 1981. 31:145-192 Copyright © 1981 by Annual Reviews Inc. All rights reserved

Recent years have witnessed a remarkable change of attitude among physicists toward baryon-number and lepton-number conservation. With the advent of the grand unified theories of strong, electromagnetic, and weak interactions (Langacker 1980, Ellis 1980), the old belief that baryon number and lepton number were exactly conserved has given way to a new belief that, because of the intrinsic structure of most grand unified theories, baryon-number and lepton-number conservation is only approximate. In part motivated by this new belief, active searches are now underway for baryon-number and lepton-number nonconserving processes such

Conservation Principles & New Expt. Results (early 1980s)

BARYON NUMBER AND LEPTON NUMBER CONSERVATION LAWS

Henry Primakoff Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

S. Peter Rosen Department of Physics, Purdue University, West Lafayette, Indiana 47907

Ann. Rev. Nucl. Part. Sci. 1981. 31: 145-192 Copyright © 1981 by Annual Reviews Inc. All rights reserved

Recent years have witnessed a remarkable change of attitude among physicists toward baryon-number and lepton-number conservation. With the advent of the grand unified theories of strong, electromagnetic, and weak interactions (Langacker 1980, Ellis 1980), the old belief that baryon number and lepton number were exactly conserved has given way to a new belief that, because of the intrinsic structure of most grand unified theories, baryon-number and lepton-number conservation is only approximate. In part motivated by this new belief, active searches are now underway for baryon-number and lepton-number nonconserving processes such

Estimation of the neutrino rest mass from measurements of the tritium β spectrum

V. A. Lyubimov, E. G. Novikov, V. Z. Nozik, E. F. Tret'yakov, V. S. Kozik, and N. F. Myasoedov

Institute of Theoretical and Experimental Physics (Submitted 22 May 1981) Zh. Eksp. Teor. Fiz. 81, 1158-1181 (October 1981)

Measurements of the tritium β spectrum near the end point and the analysis of the results are described. In comparison with our earlier study [E. F. Tret'yakov et al., Bull. Acad. Sci. USSR, Phys. Ser. 40, No. 10, p. 1 (1976) and as reported at the Aachen 1976 Neutrino Conference (p. 663)], the statistical accuracy has been greatly improved and a more rigorous measurement technique has been used. All data obtained in the two studies have been analyzed. In determining the confidence interval for the antineutrino rest mass, the method of mathematical modeling is used. For the rest mass of \tilde{v}_e a lower limit is obtained for the first time: $14 \le M_{\nu_e} \le 46$ eV. The value $E_0 = 18577 \pm 13$ eV is obtained for the energy of tritium β decay.

 $14 < m_{\nu} < 46 \text{ eV}$

Haxton Symposium LBL, January 7, 2020

Haxton, Stephenson, and Strottman (1981)

VOLUME 47, NUMBER 3

PHYSICAL REVIEW LETTERS

Double Beta Decay and the Majorana Mass of the Electron Neutrino

W. C. Haxton

Department of Physics, Purdue University, West Lafayette, Indiana 47907,^(a) and Theory Division, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545.

and

G. J. Stephenson, Jr., and D. Strottman Theory Division, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545 (Received 6 April 1981)

We have calculated the two-neutrino and no-neutrino, lepton-number-nonconserving double beta decay rates for ⁷⁶Ge and ⁸²Se. Our result for the two-neutrino decay of ⁸²Se is in agreement with a recent cloud-chamber measurement and thus in disagreement with the geochemical determination. We find that a constraint on the Majorana mass of the electron neutrino of $\langle m \rangle_v \gtrsim 15$ eV follows from the comparison of our calculations and the experimental limits on the neutrinoless decays of ⁷⁶Ge and ⁸²Se.

- Shell Model used to calculate NME
- Calculated of 2vββ and 0vββ decay rates
 - 2vββ rate for ⁸²Se in good agreement with Moe and Lowenthal
 - Experiments approaching sensitivity to 0vββ predicted for Lubimov claim

$$\left[\mathbf{T}_{1/2}^{0\nu}\right]^{-1} = G_{0\nu} \left| M_{0\nu} \right|^2 \left| \frac{\left\langle m_{\beta\beta} \right\rangle}{m_e} \right|^2$$

• Lepton violation via single massive Majorana field with LH and RH couplings

Ovββ and lepton number violating interactions

Observable (decay rate) depends on nuclear processes & nature of lepton number violating interactions (η) .

- Phase space, G_{0v} is calculable.
- Nuclear matrix elements (NME) require theory.
- lepton number violating (LNV) interactions.

$$\begin{bmatrix} \mathbf{T}_{1/2}^{0\nu} \end{bmatrix}^{-1} = G_{0\nu} |M_{0\nu}(\eta)|^2 \eta^2$$

$$\downarrow$$

$$\begin{bmatrix} \mathbf{T}_{1/2}^{0\nu} \end{bmatrix}^{-1} = G_{0\nu} |M_{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle}{m_e}^2$$

• Effective neutrino mass, $\langle m_{\beta\beta} \rangle$, depends directly on the assumed form of

Haxton $0\nu\beta\beta$ related papers (early 1980s)

PHYSICAL REVIEW D

VOLUME 25, NUMBER 9

1 MAY 1982 PHYSICAL REVIEW D

Lepton-number conservation and the double- β decay of ¹²⁸Te and ¹³⁰Te

W. C. Haxton

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 and Department of Physics, Purdue University, West Lafayette, Indiana 47907

G. J. Stephenson, Jr. and D. Strottman Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (Received 24 November 1981)

We consider the classic argument of Pontecorvo that the ratio of $\beta\beta$ -decay half-lives for ¹³⁰Te and ¹²⁸Te may indicate violation of lepton number. We believe that the theoretical support for the assumption underlying this argument, equality of the nuclear matrix elements mediating the $2\nu \beta\beta$ decay of these isotopes, is weak due to a significant disparity between the calculated and geochemical absolute rates. If one ignores this inconsistency and attributes the breaking of the γ_5 invariance of the weak leptonic current to a Majorana mass, faithful treatment of the radial dependence of the 0ν - $\beta\beta$ -decay operators yields $\langle m^{\text{Maj}} \rangle_{v} \cong 10 \text{ eV}.$

PHYSICAL REVIEW C

VOLUME 28, NUMBER 1

Radiochemical tests of double beta decay

W. C. Haxton and G. A. Cowan Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Maurice Goldhaber Brookhaven National Laboratory, Upton, New York 11973 (Received 17 February 1983)

VOLUME 26, NUMBER 7

1 OCTOBER 1982

Rapid Communications

The Rapid Communications section is intended for the accelerated publication of important new results. Manuscripts submitted to this section are given priority in handling in the editorial office and in production. A Rapid Communication may be no longer than 3¹/₂ printed pages and must be accompanied by an abstract. Page proofs are sent to authors, but, because of the rapid publication schedule, publication is not delayed for receipt of corrections unless requested by the author.

Higgs-boson-exchange contributions to neutrinoless double- β decay

W. C. Haxton

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 and Physics Department, Purdue University, West Lafayette, Indiana 47907

S. P. Rosen

Physics Division, National Science Foundation, Washington, D.C. and Physics Department, Purdue University, West Lafavette, Indiana 47907

G. J. Stephenson, Jr. Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (Received 17 May 1982)

We have calculated the contributions to the neutrinoless $\beta\beta$ decay ⁴⁸Ca(g.s.) \rightarrow ⁴⁸Ti(g.s.) arising from the exchange of both Higgs scalars and Majorana neutrinos. We find, contrary to previous claims, that the Higgs-boson-exchange mechanism has no effect on the limits that can be placed on the masses and right-handed couplings of Majorana neutrinos. We also find that these limits are less stringent than those imposed by $\beta\beta$ decay experiments in several other nuclei.

RAPID COMMUNICATIONS

JULY 1983

We discuss the feasibility of radiochemical and geochemical measurements of the rates for two double beta decay reactions, $^{238}U \rightarrow ^{238}Pu$ and $^{232}Th \rightarrow ^{232}U$, that produce unstable daughter nuclei.

Double beta decay, Haxton and Stephenson, 1984

Testing Conservation Principles via 0vββ J.F. Wilkerson

DOUBLE BETA DECAY*	
W. C. HAXTON	
Department of Physics, Princeton University, Princeton, NJ 08540 and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.†	
and	
G. J. STEPHENSON, Jr.	
Physics and Theoretical Divisions, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.	
CONTENTS	
1. INTRODUCTION	41
2. EXPERIMENTAL EVIDENCE	41
2.1. Occurrence of ββ decay	41
2.2. Direct detection experiments 2.3. Geochemical half life determinations	42
2.4. Radiochemical experiments	42
3. THEORETICAL TREATMENT	42
3.1. The Hamiltonian	42
3.2. The neutrino mass matrix and CP properties	42
3.3. Derivation of two-nucleon 2ν and 0ν $\beta\beta$ decay rates	43
3.3.1. Two-nucleon mechanism for $2v0^+ \rightarrow 0^+$ decay in the standard model 3.3.2. Two neutrino $0^+ \rightarrow 1^+$ and $0^+ \rightarrow 2^+$ decays	42
3.3.3. Two-nucleon mechanism for $0x 0^+ \rightarrow 0^+$ decays	43
3.3.4. Neutrinoless $0^+ \rightarrow 1^+$ and $0^+ \rightarrow 2^+$ decays	44
3.4. The neutrino propagator for light and heavy neutrinos	44
3.4.1. First approximation: Light or heavy neutrinos	44
3.4.2. Light neutrinos	44
3.4.3. Effects due to finite nuclear size	44
3.4.4. Correlations 3.5. The neutrino mass in <i>RR</i> and constraints imposed by <i>CP</i> conservation	44
3.5.1. Dirac limit	44
3.5.2. Majorana limit	44
3.5.3. Dominant right-handed mass limit	44
3.5.4. Pseudo-Dirac limit	- 44
3.6. Transitions involving nucleon isobars	44
3.7. Mechanisms beyond the standard model 3.8. Positron, emitting electron conture and double electron conture	43
4. NUCLEAR STRUCTURE	42
4.1. General observations	45
4.2. Nuclear calculations	45
4.3. Other structure studies	45
4.4. Theoretical approximations: Are there any surprises?	43
5. RATES FOR ββ DECAY AND LIMITS ON LEPTON NUMBER VIOLATION	43
5.1. $0^+ \rightarrow 0^+$ and $0^+ \rightarrow 2^+ 2^{-1}$ decay rates 5.2. $0^+ \rightarrow 0^+$ 0y decay and light-mass neutrinos	4:
5.2. $0^+ \rightarrow 0^+$ 0y decay mediated by heavy neutrinos	4
5.4. $0^+ \rightarrow 2^+$ 0v decay	4
6. SUMMARY AND CONCLUSIONS	4
APPENDIX: COULOMB CORRECTIONS AND PHASE-SPACE ESTIMATES OF 2v HALF LIVES	4
References	- 4

Double beta decay, Haxton and Stephenson, 1984

It has also long been recognized as a sensitive test of lepton number conservation, of the mass and charge conjugation properties of the electron neutrino, and of possible right-handed admixtures in the weak leptonic current. The new aspect in the study of $\beta\beta$ decay is the expectation arising from grand unified theories that many of the exact conservation laws of the standard electroweak model may be violated to some small degree.

An understanding of the nature and extent of these violations is likely essential to the formulation of a correct grand unified theory. It is our hope in this review to clarify the important role $\beta\beta$ decay is playing in testing lepton number conservation. It will become apparent that, to interpret such tests, important problems in both particle and nuclear physics must be addressed.

- Success of Nuclear Matrix Element calculations pointed out the need for improved experimental $2\nu\beta\beta$ measurements.
- Explored 0vββ under various lepton violating process scenarios.
- Need for improved experimental measurements.

• Detailed derivations of decay rates for $2\nu\beta\beta$ and $0\nu\beta\beta$ (particle physics, SM, gauge theories).

• Emphasized complementarity of neutrino mass, neutrino oscillation, and 0vββ experiments.

Haxton Symposium LBL, January 7, 2020

Haxton $0\nu\beta\beta$ related papers (1990's)

VOLUME 67, NUMBER 18

PHYSICAL REVIEW LETTERS

Double-Beta-Decay Mass Constraints on 17-keV Neutrinos

W. C. Haxton

Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (Received 18 July 1991)

Attempts to reconcile a 17-keV neutrino with constraints from astrophysics and double beta decay have led to model Majorana neutrino mass matrices with vanishing (or nearly vanishing) electronelectron components. A simple parametrization is presented of the higher-order mass effects on the intermediate-state propagator through which $0v \beta\beta$ decay can still occur. For light-mass eigenstates, the 0v and 2v rates are proportional, with the ratio depending on a weighted sum over mass eigenstates $\langle m_v^3 \rangle M^{aj}$. Thus model $0v \beta\beta$ decay rates can be predicted with confidence.

28 OCTOBER 1991

PHYSICAL REVIEW C

VOLUME 46, NUMBER 6

Effective summation over intermediate states in double-beta decay

J. Engel

Bartol Research Institute, University of Delaware, Newark, Delaware 19716

W. C. Haxton

Institute for Nuclear Theory HN-12 and Department of Physics FM-15, University of Washington, Seattle, Washington 98195

P. Vogel

Physics Department, California Institute of Technology, Pasadena, California 91125 (Received 24 July 1992)

We consider two separate schemes for eliminating the explicit summation over states in the intermediate nucleus in double-beta decay. The first, known as the operator expansion method, has recently been applied in several calculations; we show in a variety of simple models that the method fails and isolate its weaknesses. We then describe an efficient technique for generating Green's function matrix elements, based on the Lanczos algorithm, and apply it to a full fp-shell calculation in ⁴⁸Ca. The method efficiently generates an exact (to within machine accuracy) result while the operator expansion method is again inaccurate.

DECEMBER 1992

Expt. Observations of v oscillations (mid 1990s - mid 2000s)

IceCube DeepCore, ANTARES

Testing Conservation Principles via 0vββ J.F. Wilkerson

Ovββ decay Experiments - Current Efforts

	Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
	CANDLES	Ca-48	305 kg CaF ₂ crystals - liq. scint	0.3 kg	Construction
	CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	~ ton	R&D
COP5	GERDA I	Ge-76	Ge diodes in LAr	15 kg	Complete
	GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
	Majorana Demonstrator	Ge-76	Point contact Ge	25 kg	Operating
	LEGEND	Ge-76	Point contact with active veto	~ ton	R&D
LEGEND	NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
	SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
	SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
	LUCIFER (CUPID)	Se-82	ZnSe scint. bolometer	18 kg	R&D
	AMoRE	Mo-100	CaMoO ₄ scint. bolometer	1.5 - 200 kg	R&D
	LUMINEU (CUPID)	Mo-100	ZnMoO ₄ / Li ₂ MoO ₄ scint. bolometer	1.5 - 5 kg	R&D
	CUPID	Mo-100	Scint. Bolometer.	~ ton	R&D
	COBRA	Cd-114,116	CdZnTe detectors	10 kg	R&D
CUPID	CUORICINO, CUORE-0	Te-130	TeO ₂ Bolometer	10 kg, 11 kg	Complete
	CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
	SNO+	Te-130	0.3% natTe suspended in Scint	160 kg	Construction
	EXO200	Xe-136	Xe liquid TPC	79 kg	Complete
	nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
	KamLAND-Zen (I, II)	Xe-136	2.7% in liquid scint.	380 kg	Complete
	KamLAND2-Zen	Xe-136	2.7% in liquid scint.	750 kg	Upgrade
	NEXT-NEW	Xe-136	High pressure Xe TPC	5 kg	Operating
	NEXT-100	Xe-136	High pressure Xe TPC	100 kg - ton	R&D
	PandaX - III	Xe-136	High pressure Xe TPC	~ ton	R&D
Ramland Len	DCBA	Nd-150	Nd foils & tracking chambers	20 kg	R&D

Testing Conservation Principles via 0vββ J.F. Wilkerson

nEXO

NEXT

PandaX-III

Ovββ Current Limits (no observation)

CUORE ¹³⁰Te

Testing Conservation Principles via 0vββ J.F. Wilkerson

KamLAND Zen ¹³⁶Xe

Gerda ⁷⁶Ge

Searching for 0vßß Decay

Assuming LNV mechanism is light Majorana neutrino exchange and SM interactions (W)

$$\left[\mathbf{T}_{1/2}^{0\nu}\right]^{-1} = G_{0\nu} \left| M_{0\nu} \right|^2 \left| \frac{\left\langle m_{\beta\beta} \right\rangle}{m_e} \right|^2 \qquad \qquad m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_i \right| = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|^2 = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|^2 = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|^2$$

Testing Conservation Principles via 0vββ J.F. Wilkerson

Searching for 0vßß Decay

Assuming LNV mechanism is light Majorana neutrino exchange and SM interactions (W)

$$\left[\mathbf{T}_{1/2}^{0\nu}\right]^{-1} = G_{0\nu} \left| M_{0\nu} \right|^2 \left| \frac{\left\langle m_{\beta\beta} \right\rangle}{m_e} \right|^2 \qquad \qquad m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_i \right| = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|^2$$

Testing Conservation Principles via 0vββ J.F. Wilkerson

NSAC 2015 Long Range Plan

RECOMMENDATION II

The excess of matter over antimatter in the universe is one of the most compelling mysteries in all of science. The observation of neutrinoless double beta decay in nuclei would immediately demonstrate that neutrinos are their own antiparticles and would have profound implications for our understanding of the matter-antimatter mystery. We recommend the timely development and deployment of a U.S.-

led ton-scale neutrinoless double beta decay experiment.

A ton-scale instrument designed to search for this as-yet unseen nuclear decay will provide the most powerful test of the particleantiparticle nature of neutrinos ever performed. With recent experimental breakthroughs pioneered by U.S. physicists and the availability of deep underground laboratories, we are poised to make a major discovery.

This recommendation flows out of the targeted investments of the third bullet in Recommendation I. It must be part of a broader program that includes U.S. participation in complementary experimental efforts leveraging international investments together with enhanced theoretical efforts to enable full realization of this opportunity.

Ovββ decay Experiments - Leading Efforts

	Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
	GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
	MAJORANA Demonstrator	Ge-76	Point contact Ge	25 kg	Operating
	LEGEND	Ge-76	Point contact with active veto	~ ton	Const. LEGEND-200
LEGEND					
	CUPID	Mo-100	Mo-100 Scint. Bolometer	~ ton	R&D
	CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
	SNO+	Te-130	0.3% natTe suspended in Scint	160 kg	Constr./Commish
CUPID	EXO200	Xe-136	Xe liquid TPC	79 kg	Complete
	nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
	KamLAND-Zen (I, II)	Xe-136	2.7% in liquid scint.	400, 800 kg	Complete,
	KamLAND2-Zen	Xe-136	Improved light coll, disc	800 kg	Operating
	NEXT	Xe-136	High pressure Xe TPC	~ton	Oper. NEXT-100
KamLAND Zen	PandaX - III	Xe-136	High pressure Xe TPC	~ ton	
civation i micipies via uvpp			20		

Testing Conse J.F. Wilkerson

nEXO

NEXT

PandaX-III

Ovßß Background and Sensitivity

Testing Conservation Principles via 0vββ J.F. Wilkerson

Ovßß Background and Sensitivity

Testing Conservation Principles via 0vββ J.F. Wilkerson

Ovββ Background and Sensitivity

Testing Conservation Principles via 0vββ J.F. Wilkerson

Haxton Symposium LBL, January 7, 2020

Large theory collaboration with the goal to calculate nuclear matrix elements that:

- 1. Are more accurate
- 2. Carry a quantified uncertainty.

Summary

- Wick and collaborators helped launch the 0vββ "modern era", utilizing expertise in particle and nuclear physics.
- Significant progress searching for $0\nu\beta\beta$.
 - Experiments have attained or are approaching sensitivities of $T_{1/2} > 10^{26}$ years, with substantially reduced backgrounds.
 - "Background free" measurements have been achieved as have detectors with masses >200 kg.
 - Theory progress should provide NME with realistic uncertainties and will likely reduce uncertainties _ associated with g_A. This will have a critical impact on understanding sensitivity and discovery potential
- The ability to discover 0vββ will require excellent energy resolution, low backgrounds ("background free") and large exposures (t-y) as well as observation by independent experiments, using different isotopes.
- $0\nu\beta\beta$ continues to be an exquisite method to test for lepton number violation and fundamental conservation laws.

Ovββ Discovery Sensitivity and Future prospects

Discovery probability of next-generation neutrinoless double-beta decay experiments Matteo Agostini, Giovanni Benato, and Jason Detwiler arXiv:1705.02996v1

Red : Achieved Backgrounds; Black : Projected Backgrounds

Width of bands based on range of NME values

Experimental searches for $0\nu\beta\beta$ -decay

Most sensitive experiments to date using 76 Ge, 130 Te, and 136 Xe have attained results for T_{1/2} approaching or $> 10^{26}$ years.

With (source mass) × (exposure times) of 10 - 175 kg-years

Covering IH region requires sensitivities of $0\nu\beta\beta T_{1/2} \sim 10^{27}$ - 10²⁸ years $(2\nu\beta\beta T_{1/2} \sim 10^{19} - 10^{21} \text{ years})$

Half life (years)	~Signal (cnts/ton-year)
1025	500
5x10 ²⁶	10
5x10 ²⁷	1
5x10 ²⁸	0.1
>1029	0.05

Ovββ Historical Progress

Progress with $0\nu\beta\beta$ Theory

Goal 2 requires a first-principles framework of interactions and currents: Chiral Effective Field Theory.

Cirigliano et al. recently found that we need new short-range operator, even when underlying mechanism is light- ν exchange. May increase uncertainty.

Along the way, have explained most of quenching in β decay, are currently exploring effects on $\beta\beta$ decay.

4N Force

