The Direct Road to Neutrino Mass

Hamish Robertson, CENPA, University of Washington

Wick Haxton Festschrift "Looking for v Physics on Earth and in the Cosmos"

LBNL January 7, 2020

"Hence, we conclude that the rest mass of the neutrino is either zero, or, in any case, very small in comparison to the mass of the electron." *E. Fermi, 1934*

F. Wilson, Am. J. Phys. 36, 1150 (1968)

"Hence, we conclude that the rest mass of the neutrino is either zero, or, in any case, very small in comparison to the mass of the electron." *E. Fermi, 1934*

F. Wilson, Am. J. Phys. 36, 1150 (1968)

This is the "direct" method.

First experiments with gaseous tritium !

Beta Spectrum of Tritium

S. C. CURRAN Nature 162, 302 (1948) Department of Natural Philosophy, University of Glasgow. May 21.

$m_v < 500 \text{ eV}$

Phys. Rev. 75, 983 (1949)

The β-Spectrum of H^{*}

G. C. HANNA AND B. PONTECORVO Chalk River Laboratory, National Research Council of Canada, Chalk River, Ontario, Canada January 28, 1949

FIG. 2. "Kurie" plot of the end of the H³ spectrum. The theoretical curve (shown dotted) corresponding to a finite neutrino mass of 500 ev (or 1 kev —see text) has been included for comparison.

Los Alamos

FIG. 2. Residuals in fits to neutrino masses of 0 (top) and 30 eV (bottom). All other parameters including α_1 have been allowed to vary.

Neutrino oscillations discovered – neutrinos have mass!

KATRIN

At Karlsruhe Institute of Technology unique facility for closed T₂ cycle: Tritium Laboratory Karlsruhe

A direct, modelindependent, kinematic method, based on β decay of tritium.

~75 m long with 40 s.c. solenoids

Overview of KArlsruhe TRItium Neutrino Experiment

KATRIN forms *integral* spectrum with MAC-E filter

KATRIN PRL 123, 221802 (2019)

 $m_{\nu}^2 = (-1.0 + 0.9) \text{ eV}^2$

Result is statistically probable

best-fit result corresponds to a 1-\sigma statistical fluctuation to negative m²(v_e)

- p-value is derived from 13 000 MC samples with $m^{2}(v_{e}) = 0$ and properly fluctuated σ_{stat} and σ_{syst}

p-value = 0.16

Derivation of mass limit

confidence belts: procedures of Lokhov and Tkachov (LT) + Feldman and Cousins (FC)

- for this first result we follow the robust LT method
- LT yields experimental sensitivity by construction for $m^2(v_e) < 0$
- KATRIN upper limit on neutrino mass:

LT m(v) < 1.1 eV (90% CL)

FC m(v) < 0.8 eV (90% CL) < 0.9 eV (95% CL)

Still mainly statistically limited

- total statistical uncertainty budget $\sigma_{stat} = 0.97 \text{ eV}^2$
- total systematic uncertainty budget $\sigma_{syst} = 0.32 \text{ eV}^2$

non-Poisson bg. part background slope B-field values HV "stacking" inelastic scattering final state distribution energy loss distribution

The road is direct, but long!

Neutrinos in the cosmos

Tension with the HST galaxy low-z data can be resolved by relaxing w:

$$w \sim -1.14 ^{+0.12}_{-0.10}$$

$$\Sigma m_{
u}$$
 ~ $0.35 \, {}^{+0.16}_{-0.25}$ eV

Di Valentino et al. PLB 761, 242 (2016)

THE LAST ORDER OF MAGNITUDE

Statistics

Size of experiment now: Diameter 10 m.

$$\sigma(m_{\nu}^2) = k \frac{b^{1/6}}{r^{2/3}t^{1/2}},$$

Next diameter: 300 m!

If the mass is below 0.2 eV, how can we measure it? KATRIN may be the largest such experiment possible.

and vibration

A new idea : Cyclotron Radiation Emission Spectroscopy (CRES).

(B. Monreal and J. Formaggio, PRD 80:051301, 2009)

If you are going to measure Arthur anything with precision, measure Schawlow frequency. Cyclotron motion: $f_{\gamma} = \frac{f_{\rm c}}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_{\rm e} + E_{\rm kin}/c^2}$ B field $f_{\rm c} = 27\,992.491\,10(6)\,{\rm MHz\,T^{-1}}$

Surprisingly, this had never been observed for a single electron. **19**

First CRES event (from ^{83m}Kr)

First CRES event (from ^{83m}Kr)

start frequency of the first track gives kinetic energy.

frequency chirps linearly, corresponding to ~1 fW radiative loss.

electron scatters inelastically, losing energy and changing pitch angle.

O Eventually, scatters to an untrapped angle

High resolution ^{83m}Kr data (shallow trap)

- Data in a shallow trap demonstrates 4 eV FWHM, including 2.83 eV natural width of ^{83m}Kr 17.8 keV K conversion electron.
- Main line shape consistent with a Voigt profile
- Shakeup and shakeoff in Kr, and scattering before detection, leads to high-f (low-E) tail.

WHY IS THIS IMPORTANT?

- Source is transparent to microwaves: can make it as big as necessary.
- Whole spectrum is recorded at once, not point-by-point.
- Excellent resolution should be obtainable.
- Low backgrounds are expected.
- An atomic source of T (rather than molecular T₂) may be possible. Eliminates the molecular broadening.

CRES Molecular T₂ spectrum (deep trap)

Phase II Instrument improvements:

- Cylindrical waveguide (more volume)
- 4 deep trap coils (more statistics)
- Amplifiers colder (less noise)
- BUT 35 eV resolution (deep trap)

- Tritium endpoint spectrum based on 7 days data from Oct 2018
 - Fits well, yielding correct endpoint, and no background above
 - More tritium running now in progress

KATRIN

Project 8

KATRIN spectrometer

Project 8 spectrometer (to scale)

DIRECT MASS MEASUREMENTS...

... are largely model independent:

- Majorana or Dirac
- No nuclear matrix element complications
- No complex phases
- No cosmological degrees of freedom

KATRIN is running! New mass limit 1.1 eV (90% CL)

Success of Project 8 proof-of-concept.

- New spectroscopy based on frequency
- Potential atomic T source: eliminate molecular broadening. Design and testing underway.

Wick and I have collaborated!

PHYSICAL REVIEW C

VOLUME 59, NUMBER 1

JANUARY 1999

Solar neutrino interactions with ¹⁸O in the SuperKamiokande water Cerenkov detector

W. C. Haxton^{1,3} and R. G. H. Robertson^{2,3}

 ¹Institute for Nuclear Theory, Box 351550, University of Washington, Seattle, Washington 98195
 ²Nuclear Physics Laboratory, Box 354290, University of Washington, Seattle, Washington 98195
 ³Department of Physics, Box 351560, University of Washington, Seattle, Washington 98195 (Received 26 June 1998)

Wick and I have collaborated!

PHYSICAL REVIEW C

VOLUME 59, NUMBER 1

JANUARY 1999

Solar neutrino interactions with ¹⁸O in the SuperKamiokande water Cerenkov detector

W. C. Haxton^{1,3} and R. G. H. Robertson^{2,3}

 ¹Institute for Nuclear Theory, Box 351550, University of Washington, Seattle, Washington 98195
 ²Nuclear Physics Laboratory, Box 354290, University of Washington, Seattle, Washington 98195
 ³Department of Physics, Box 351560, University of Washington, Seattle, Washington 98195 (Received 26 June 1998)

143. W.C. Haxton. Solar neutrino interactions with ¹⁸O in the SuperKamiodande water Cerenkov detector. *Phys. Rev. C* **59**, 515 (1999).

Happy Birthday, Wick!

KATRIN neutrino mass campaign #1

4-week long measuring campaign in spring 2019 with high-purity tritium

- April 10 May, 13 2019 780 h
- high-purity tritium (ε_T = 97.5 %) laser-Raman
- high source activity: 2.45 · 10¹⁰ Bq
- high-quality data collected
- full analysis chain using two independent methods
- target: first neutrino mass result at TAUP 2019

M. Slezak Analysis strategies & treatment of systematic effects in KATRIN

Neutrino # 19

Neutrino # 19

H. Robertson 7/19

Integral tritium spectrum from KATRIN

High-statistics ß-spectrum

- 2 million events in in 90-eV-wide interval (522 h of scanning)
- excellent goodness-of-fit $\chi^2 = 21.4$ for 23 d.o.f. (p-value = 0.56)
- bias-free analysis
 - blinding of FSD
 - full analysis chain first on MC data sets
 - final step: unblinded FSD for experimental data

analysis chain & v-mass result

- two independent analysis methods to propagate uncertainties & infer parameters
 - Covariance matrix:
 covariance matrix + χ²-estimator
 - MC propagation:

10⁵ MC samples + likelihood (-2 ln \mathcal{L})

- both methods agree to a few percent
- v-mass and E₀: best fit results

$$m^2(v_e) = \left(-1.0 + 0.9 - 1.1\right) \text{eV}^2 (90\% \text{ CL})$$

E₀ = (18573.7 ± 0.1) eV ⇒ Q-value : (18575.2 ± 0.5) eV Q-value [ΔM(³H,³He)]: (18575.72 ± 0.07) eV

KATRIN near- and long-term future :

- further reduction of systematics
 energy loss via egun in ToF modus, …

R&D works on ToF-technique for differential tritium scanning

 - 1000 days of measurements at nominal ρd (5 · 10¹⁷ molecules cm⁻²)
 3 tritium campaigns (65 days each) per calendar year

sensitivity $m(v_e) = 0.2 \text{ eV} (90\% \text{ CL})$ 0.35 eV (5 σ)

CYCLOTRON RADIATION EMISSION SPECTROSCOPY (CRES)

Real experiments must confine electrons in a magnetic trap for sufficient observation time:

- *B* is the average field sampled by the electron in an observation time window.
- Introduces pitch angle (θ) dependence.
- E.g., harmonic traps (B ~ z²) have an analytical solution for instantaneous frequency:

$$\omega(t) \approx \Omega_c \left(\left(1 + \frac{\cos^2 \theta}{2\sin^2 \theta} \right) + \frac{Pt}{\gamma_0 m_e c^2} + \frac{z_{max} \Omega_a}{v_p} \cos(\Omega_a t) \right)$$

- 1st term is "naïve" cyclotron frequency plus a correction due to slightly different field variations sampled by electrons w/ different starting angles θ.
- 2nd term is a *chirp* due to energy lost to cyclotron radiation power *P*
- 3rd term is a *warble* due to reflections at the end of the trap leads to doppler sidebands in frequency spectra.

•CRES phenomenology in a waveguide environment is detailed in Ashtari Esfahani et al., Phys. Rev. C 99 (2019)

Project 8 Oct 8-13, 2018

Tritium - Spectrum (Walter's talk at DNP)

417 events

- > 417 tritium events reconstructed from data
- > Agreement with predicted spectral shape

~50 eV FWHM

> No background events beyond endpoint

MASS RANGE ACCESSIBLE

