# Stronger nuclear structure calculations for <br> <br> weak physics 

 <br> <br> weak physics}

Calvin W. Johnson

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Numbers DE-FG02-96ER40985 and DE-SC0015376"

Searching for $v$ physics, LBL, Jan 8, 2020

## An all-too-common view:

## An all-too-common view:



Dark matter, string theory, neutrino physics....

## An all-too-common view:



Dark matter, string theory, neutrino physics....

## An all-too-common view:



Dark matter, string theory, neutrino physics....


Nuclear structure physics

## A better view:



Dark matter, string theory,
Nuclear structure physics neutrino physics....

A better view:

Modern nuclear structure physics is rigorous, vigorous, and the launchpoint for many other investigations.

## Our story so far....

We have made great strides in $a b$ initio calculations of nuclear structure, e.g.,
the no-core shell model (NCSM), using interactions fit to NN data, for example,

- The HOBET project (talks by Tom Luu, Ken McElvain)
- $\chi$ EFT
- etc

Good primarily for light nuclei, though can extend via in-medium similarity renormalization group (IM-SRG)

## Our story so far....

But many applications often require matrix elements in heavy nuclei:

- dark matter cross sections (Xe, Ge, etc.)
- parity-violating "anapole" moment in cesium and similar nuclei
- measurement of permanent electric dipole moments in ${ }^{199} \mathrm{Hg}$ (Schiff moment)
- and of course, neutrinoless double-beta decay


## Our story so far....

But many applications often require
Many of these targets are so heavy, difficult to

- dark reach by conventional Ge, etc.)
- pari shell model in cesium

The goal of reaching

- n heavy nuclei by
n configuration-interaction
- a inspired this talk
ment)
ouble-beta

SAN Diego State UNIVERSITY

To compute transition rates, we use Fermi's (actually Dirac's) Golden Rule from time-dependent perturbation theory:

$$
\left.R_{i \rightarrow f}=\frac{2 \pi}{\hbar}|\langle f| \hat{O}| i\right\rangle\left.\right|^{2} \frac{d N_{f}}{d E}
$$

To compute transition rates, we use Fermi's (actually Dirac's) Golden Rule from time-dependent perturbation theory:

$$
\quad R_{i \rightarrow f}=\frac{2 \pi}{\hbar} \sqrt{\left.\langle f| O|i\rangle\right|^{2}} \frac{d N_{f}}{d E}
$$

To compute transition rates, we use Fermi's (actually Dirac's) Golden Rule from time-dependent perturbation theory:

$$
R_{i \rightarrow f}=\frac{2 \pi}{\hbar} \sqrt{\left.\langle f| O|i\rangle\right|^{2}} \frac{d N_{f}}{d E}
$$

Now you need to compute the transition strength!


Searching for $v$ physics, LBL, Jan 8, 2020

To get the many-body states, we use the matrix formalism (a.k.a configuration-interaction)

$$
\begin{gathered}
\hat{\mathbf{H}}|\Psi\rangle=E|\Psi\rangle \\
|\Psi\rangle=\sum_{\alpha} c_{\alpha}|\alpha\rangle \quad H_{\alpha \beta}=\langle\alpha| \hat{\mathbf{H}}|\beta\rangle \\
\sum_{\beta} H_{\alpha \beta} c_{\beta}=E c_{\alpha} \quad \text { if } \quad\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta}
\end{gathered}
$$



Despite advances, it is easy to get to model spaďés ${ }^{\text {ERSITY }}$ beyond our reach:
$s d$ shell: max dimension 93,000. Can be done in a few minutes on a laptop.
$p f$ shell: ${ }^{48} \mathrm{Cr}$, dim 2 million, $\sim 10$ minutes on laptop
${ }^{52} \mathrm{Fe}$, $\operatorname{dim} 110$ million, a few hours on modest workstation
${ }^{56} \mathrm{Ni}$, dim 1 billion, 1 day on advanced workstation ${ }^{60} \mathrm{Zn}$, dim 2 billion, < 1 hour on supercomputer

Despite advances, it is easy to get to model spadee s beyond our reach:
shells between 50 and $82\left(0 g_{7 / 2} 2\right.$ s $\left.1 \mathrm{~d} 0 h_{11 / 2}\right)$
${ }^{128} \mathrm{Te}$ : dim 13 million (laptop)
${ }^{127}$ I: dim 1.3 billion (small supercomputer)
${ }^{128} \mathrm{Xe}$ : dim 9.3 billion (supercomputer)
${ }^{129} \mathrm{Cs}$ : dim 50 billion (haven't tried!)

## Can we come up with an alternate approach?



How most shell-model codes represent the basis: Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

How most shell-model codes represent the basis: Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu \nu} c_{\mu \nu}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

BIGSTICK* is an M-scheme code, meaning total $J_{z}$ fixed
We have a constraint: $\mathrm{M}_{\mathrm{p}}+\mathrm{M}_{\mathrm{n}}=\mathrm{M}$
*github.com/cwjsdsu/BigstickPublick/ see also arXiv:1801:08432

How most shell-model codes represent the basis: Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

BIGSTICK is an M -scheme code, meaning total $\mathrm{J}_{\mathrm{z}}$ fixed

We have a constraint: $\mathrm{M}_{\mathrm{p}}+\mathrm{M}_{\mathrm{n}}=\mathrm{M}$

$$
|\Psi, M\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}, M_{p}\right\rangle\left|n_{v}, M_{n}=M-M_{p}\right\rangle
$$

This leads to a block

## Factorization

 structure for construction of the basis

Searching for $v$ physics, LBL, Jan 8, 2020

For fast calculation these are typically bit strings, or "occupation representation of Slater determinants"

$$
\begin{aligned}
& |\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle \\
& \downarrow \\
& 01101000 \ldots\rangle|10010100 \ldots\rangle
\end{aligned}
$$

Alternate approach for medium/nuclei:
Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Can we truncate for just a few components?
Priori work by Papenbrock, Juodagalvis, Dean, Phys. Rev. C 69, 024312 (2004), but focused on N =Z
(Also others...)

## Alternate approach for medium/nuclei:

Proton-neutron factorization

$$
\begin{gathered}
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle \\
\left(a_{1}|010110 \ldots\rangle+a_{2}|110010 \ldots\rangle+a_{3}|001011 \ldots\rangle+\ldots .\right)
\end{gathered}
$$

No longer single "Slater determinants" but linear combinations...

Example application:
${ }^{129} \mathrm{Cs}:$ M-scheme dim 50 billion (haven't tried!)
Proton dimension: 14,677
Neutron dimension: 646,430


## Sometimes this is called the 'weak coupling' approximation!

Nequoni umiminsion. ото,430


# Can the wave function be wellapproximated by just a few select proton and neutron states? 

## These would not be single Slater determinants but linear combinations

My tool for investigation:
The entanglement entropy (See Amol Patwardhan's talk)

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Let any wavefunction have two components (i.e., proton and neutron components)
= "bipartite"

Find the singular-value-decomposition eigenvalues of $c_{\mu \nu}--$ a basis independent characterization of the coupling

My tool for investigation:
The entanglement entropy

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Note these are proton and neutron many-body states (linear combinations of Slater determinants)

Find the singular-value-decomposition eigenvalues of $c_{\mu v}$ :
Find eigenvalues $\lambda_{\mathrm{i}}$ of $\rho_{\mu \mu^{\prime}}=\sum_{\nu} c_{\mu \nu} c_{\mu^{\prime} \nu}$

$$
S=-\sum_{i} \lambda_{i} \ln \lambda_{i}=-\operatorname{tr} \rho \ln \rho
$$

The entanglement entropy

$$
\begin{aligned}
& |\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle \\
& S=-\sum_{i} \lambda_{i} \ln \lambda_{i}=-\operatorname{tr} \rho \ln \rho
\end{aligned}
$$

The entanglement entropy measures how correlated ('entangled') the two sectors are. $\mathrm{S}=0$ means uncorrelated.

SAN Difgo State UNIVERSITY

## Now let's turn to nuclei, with

$$
|\Psi\rangle=\sum_{\mu \nu} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$



Z=N nuclei in $s d$ shell

Searching for $v$ physics, LBL, Jan 8, 2020

## Now let's follow as isospin increases

Searching for $v$ physics, LBL, Jan 8, 2020


A=28 nuclei in $s d$ shell with USDB
searcnıng tor v pnysics, LDL, Jan $\quad$, LULU

USDB


San Diego State JNIVERSITY


Protons sd Neutrons pf (Toy model of heavy nuclie)


PNISM = proton-neutron interacting shell model We have written a code to take advantage of this (O. Gorton)

We want to find solutions to
$\hat{H}|\Psi\rangle=E|\Psi\rangle$ where $\hat{H}=\hat{H}_{p p}+\hat{H}_{n n}+\hat{H}_{p}$
We solve $\hat{H}_{p p}\left|\Psi_{p}\right\rangle=E_{p}\left|\Psi_{p}\right\rangle \quad \hat{H}_{n n}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$
and choose certain $\left|\Psi_{p}\right\rangle\left|\Psi_{n}\right\rangle$ as basis for diagonalization;
our results with the entropy suggest we only need a few

SAN Diego State UNIVERSITY

Using BIGSTICK we construct many-proton states of good $J$

$$
\left|\Psi_{p}, J_{p} M\right\rangle=\sum_{\mu} c_{\mu}\left|p_{\mu}, M\right\rangle
$$

and the same for many-neutron states; these we couple together in a $J$-scheme code with fixed $J$ for basis:

$$
\left|\Psi_{J}\right\rangle=\sum_{a b} c_{a b}\left[\left|\Psi_{p} a, J_{p}\right\rangle \otimes\left|\Psi_{n} b, J_{n}\right\rangle\right]_{J}
$$

we find matrix elements of the Hamiltonian in basis of these states and diagonalize.


## ${ }^{48} \mathrm{Cr}, \mathrm{GX} 1 \mathrm{~A}$ interaction



PNISM used 250 proton and 250 neutron levels (out of 4845 each)

## ${ }^{48} \mathrm{Cr}, \mathrm{GX} 1 \mathrm{~A}$ interaction


${ }^{48} \mathrm{Cr}, \mathrm{GX} 1 \mathrm{~A}$ interaction


## ${ }^{48} \mathrm{Cr}$ <br> Absolute energies



Searching for $v$ physics, LBL, Jan 8, 2020


Searching for $v$ physics, LBL, Jan 8, 2020

## ${ }^{49} \mathrm{Cr}$

## Excitation energies



40 proton levels
+40 neutron
levels

## ${ }^{56} \mathrm{Ni}$ <br> Excitation energies

40 proton levels + 40 neutron levels

## ${ }^{60}$ Zn <br> Excitation energies



GO STATE 'ERSITY

40 proton levels + 40 neutron levels

## ${ }^{57}$ Fe

## Excitation energies



Searching for v physics, LBL, Jan 8, 2020

40 proton levels + 40 neutron levels

- an Diego State UNIVERSITY

We have yet to do applications, only "proof of principle."

Sample application:
shells between 50 and $82\left(0 g_{7 / 2} 2\right.$ s $\left.1 \mathrm{~d} 0 \mathrm{~h}_{11 / 2}\right)$
${ }^{129} \mathrm{Cs}:$ M-scheme dim 50 billion (haven't tried!)

Proton dimension: 14,677
Neutron dimension: 646,430

We have yet to do applications, only "proof of principle."

Crazy-difficult isotope: shells between 50 and $82\left(0 g_{7 / 2} 2\right.$ s $\left.1 d \mathrm{Oh}_{11 / 2}\right)$

## ${ }^{132} \mathrm{Nd}$ : M-scheme dim 85 TRILLION

Proton dimension $=$ Neutron dimension $=3.7$ million

## Summary:

- Shell model codes are restricted in size of problem; how to go further?
- BIGSTICK (and similar codes) use basis states which are simple outer products of proton, neutron states.
- Can we restrict ourselves to some subset of proton, neutron states?
- Use entanglement entropy to investigate.
* Looks promising, especially for $\mathrm{N} \neq \mathrm{Z}$


## Next steps:

- We have built a "weak entanglement code" PNISM
- Test transitions
- Make parallel/more efficient
- Investigate convergence
- Apply to currently intractable nuclides!


To detect dark matter, one needs nuclear cross-sections.
For neutrino physics, nuclear cross-sections.
For neutrinoless $\beta \beta$ decay, need nuclear matrix element
For parity/time-reversal violation (e.g. EDM), need nuclear matrix element....

## EXTRA SLIDES

Searching for v physics, LBL, Jan 8, 2020

# Example of entanglement entropy: good angular momentum 

Consider 2 spin-1/2 particles:

$$
|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle
$$

Example of entanglement entropy: good angular momentum

Consider 2 spin-1/2 particles:

$$
|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle, \downarrow \downarrow\rangle, \downarrow \downarrow
$$

Consider total $J=0$ state: $|J=0\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$
then

$$
\mathbf{C}=\left(\begin{array}{cc}
0 & +\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & 0
\end{array}\right) \quad \text { and }
$$

$$
\rho_{\mu \mu}=\sum_{v} c_{\mu v} c_{\mu v}
$$

Example of entanglement entropy:
Consider total $J=0$ state: $|J=0\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$
then $\mathbf{C}=\left(\begin{array}{cc}0 & +\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0\end{array}\right)$ and $\rho_{\mu \mu^{\prime}}=\sum_{v} c_{\mu \nu} c_{\mu^{\prime} v}$
or $\rho=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$
Note trace $\rho=1$.

Example of entanglement entropy:
Consider total $J=0$ state: $|J=0\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$
then $\mathbf{C}=\left(\begin{array}{cc}0 & +\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0\end{array}\right) \quad$ and $\rho_{\mu \mu^{\prime}}=\sum_{\nu} c_{\mu \nu} c_{\mu^{\prime} \nu}$
or $\rho=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$
Then entropy $S=\ln 2$,
which is the maximum.
Note trace $\rho=1$.

Example of entanglement entropy: good angular momentum
Conversely,

$$
|J=1, M=1\rangle=|\uparrow \uparrow\rangle
$$

has

$$
\mathbf{C}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and $\quad \rho=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \quad$ Then entropy $S=0$.
Note trace $\rho=1$.

USDB "traceless" = s.p.e, monopoles removed




SAN Diego State UNIVERSITY

## That is, we take low-lying solutions

 of $H_{p p}$ and $H_{n n}$ and then project full solutions onto themLet's decompose the wavefunction into eigenstates of $H_{p p}$ and $H_{n n}$
Searchmig ior v priysics, LDL, jailo, $\angle 0 \angle 0$

Solve $\quad\left(\mathbf{H}_{p p}+\mathbf{H}_{n n}+\mathbf{H}_{p n}\right)\left|\Psi_{\text {full }}\right\rangle=E\left|\Psi_{\text {full }}\right\rangle$
then solve $\mathbf{H}_{p p}\left|\Psi_{p}\right\rangle=E_{p}\left|\Psi_{p}\right\rangle \quad \mathbf{H}_{n n}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$
Expand

$$
\left|\Psi_{\text {full }}\right\rangle=\sum_{p, n} c_{p, n}\left|\Psi_{p}\right\rangle \otimes\left|\Psi_{n}\right\rangle
$$

and compute $\mathrm{P}(\mathrm{p})=\left|\left\langle\Psi_{p} \mid \Psi_{\text {full }}\right\rangle\right|^{2}=\sum_{n} C_{p, n}^{2}$


SAN Diego State UNIVERSITY

Although BIGSTICK is an M-scheme code

$$
|\Psi, M\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}, M_{p}\right\rangle\left|n_{v}, M_{n}=M-M_{p}\right\rangle
$$

because $\mathbf{H}$ commutes with $\mathbf{J}^{2}$, the eigenstates have good $J$

$$
|\Psi, J M\rangle=\sum_{\mu \nu} c_{\mu v}\left|p_{\mu}, M_{p}\right\rangle\left|n_{v}, M_{n}=M-M_{p}\right\rangle
$$

This is true even if only protons or only neutrons

Technical details (if time allows)
Let $\mathbf{H}=\mathbf{H}_{\mathrm{pp}}+\mathbf{H}_{\mathrm{nn}}+\mathbf{H}_{\mathrm{pn}}$
BIGSTICK:
generate states $\mid a_{p}>$, matrix elements $<a_{p}\left|\mathbf{H}_{p p}\right| a_{p}^{\prime}>$ and one body densities $<\mathrm{a}_{\mathrm{p}}\left|\mathrm{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}}\right| \mathrm{a}_{\mathrm{p}}^{\prime}>$
generate states $\left|b_{n}\right\rangle$, matrix elements $<b_{n}\left|\mathbf{H}_{n n}\right| b_{n}^{\prime}>$ and one body densities $<\mathrm{b}_{\mathrm{n}}\left|\mathrm{c}_{\mathrm{i}}^{+} \mathrm{c}_{\mathrm{j}}\right| \mathrm{b}_{\mathrm{n}}^{\prime}>$

PNISM (proton-neutron interacting shell model) read in the above and
generate matrix elements $<\mathrm{a}_{\mathrm{p}}, \mathrm{b}_{\mathrm{n}}\left|\mathbf{H}_{\mathrm{pn}}\right| \mathrm{a}_{\mathrm{p}}^{\prime}, \mathrm{b}_{\mathrm{n}}^{\prime}>$ using proton, neutron one-body densities

Diagonalize $\mathbf{H}_{\mathrm{pp}}+\mathbf{H}_{\mathrm{nn}}+\mathbf{H}_{\mathrm{pn}}$ in truncated space.





