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A better view:

7

Modern nuclear structure physics is rigorous,
vigorous, and the launchpoint for many other 
investigations.
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We have made great strides in ab initio calculations 
of nuclear structure, e.g.,
the no-core shell model (NCSM), using
interactions fit to NN data, for example,

• The HOBET project (talks by Tom Luu,  Ken McElvain)
• cEFT
• etc

Good primarily for light nuclei, though can extend 
via in-medium similarity renormalization group 
(IM-SRG)

8

Our story so far….
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But many applications often require
matrix elements in heavy nuclei:

• dark matter cross sections (Xe, Ge, etc.)
• parity-violating “anapole” moment in cesium 

and similar nuclei
• measurement of permanent electric dipole 

moments in 199Hg (Schiff moment)
• and of course, neutrinoless double-beta decay

9
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and similar nuclei
• measurement of permanent electric dipole 

moments in 199Hg (Schiff moment)
• and of course, neutrinoless double-beta decay
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Our story so far….

Many of these targets 
are so heavy, difficult to 
reach by conventional 

shell model 
The goal of reaching 

heavy nuclei by 
configuration-interaction

inspired this talk
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To compute transition rates, we use Fermi’s (actually Dirac’s) 
Golden Rule from time-dependent perturbation theory:
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Transition probability (strength)

Now you need to 
compute the transition 

strength!

To compute transition rates, we use Fermi’s (actually Dirac’s) 
Golden Rule from time-dependent perturbation theory:
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€ 

ˆ H Ψ = E Ψ

To get the many-body states, we use 
the matrix formalism (a.k.a configuration-interaction)

€ 

Ψ = cα α
α

∑

€ 

Hαβ = α ˆ H β

€ 

Hαβcβ
β

∑ = Ecα if

€ 

α β = δαβ
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State of the art shell model calculations late 1980’s
dim 386,000    16O 4p-4h

A Cray-2, state of the art
in 1985

Now in museums!
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Despite advances, it is easy to get to model spaces 
beyond our reach:

sd shell: max dimension 93,000. Can be done in a few 
minutes on a laptop.

pf shell: 48Cr, dim 2 million,  ~10 minutes on laptop
52Fe, dim 110 million, a few hours on modest workstation
56Ni, dim 1 billion, 1 day on advanced workstation
60Zn, dim 2 billion, < 1 hour on supercomputer
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Despite advances, it is easy to get to model spaces 
beyond our reach:

shells between 50 and 82 (0g7/2 2s1d 0h11/2)
128Te: dim 13 million (laptop)
127I: dim 1.3 billion (small supercomputer)
128Xe: dim 9.3 billion (supercomputer)
129Cs: dim 50 billion (haven’t tried!)
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Can we come up with an 
alternate approach?
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Proton-neutron factorization
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Ψ = cµν pµ

µν
∑ nν
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How most shell-model codes represent the basis:
Proton-neutron factorization

!
Ψ = cµν pµ

µν
∑ nν

BIGSTICK* is an M-scheme code, meaning total Jz fixed

We have a constraint: Mp+Mn = M

*github.com/cwjsdsu/BigstickPublick/   see also         arXiv:1801:08432 
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How most shell-model codes represent the basis:
Proton-neutron factorization

!
Ψ = cµν pµ

µν
∑ nν

BIGSTICK is an M-scheme code, meaning total Jz fixed

We have a constraint: Mp+Mn = M

!!
Ψ ,M = cµν pµ ,Mp

µν
∑ nν ,Mn =M −Mp
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FACTORIZATION

22

np aaa ´=
Neutron SDs

Pr
ot

on
 S

D
s

20Ne 640 66

24Mg        28,503               495

28Si          93,710               924

48Cr      1,963,461           4895

52Fe    109,954,620       38,760

56Ni   1,087,455,228   125,970

Example N = Z nuclei
Nuclide   Basis dim       # pSDs (=#nSDs)

This leads to a block 
structure for construction
of the basis
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For fast calculation these are typically 
bit strings, or “occupation representation of Slater
determinants”

!
Ψ = cµν pµ

µν
∑ nν

!01101000... 10010100...
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Alternate approach for medium/nuclei:
Proton-neutron factorization

!
Ψ = cµν pµ

µν
∑ nν

Can we truncate for just a few components?

Priori work by Papenbrock, Juodagalvis, Dean, 
Phys. Rev. C 69, 024312 (2004), but focused on
N =Z

(Also others…)
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Alternate approach for medium/nuclei:
Proton-neutron factorization

!
Ψ = cµν pµ

µν
∑ nν

No longer single “Slater determinants” but 
linear combinations…

!! a1 010110... +a2 110010... +a3 001011... + .....( )
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Example application:

129Cs: M-scheme dim 50 billion (haven’t tried!)

Proton dimension: 14,677
Neutron dimension: 646,430

The idea is to solve proton and 
neutron problems separately and then 
couple together a few “select” states
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Example application:

129Cs: M-scheme dim 50 billion (haven’t tried!)

Proton dimension: 14,677
Neutron dimension: 646,430

The idea is to solve proton and 
neutron problems separately and then 
couple together a few “select” states

Sometimes this is 
called the ‘weak 

coupling’ 
approximation!
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Can the wave function be well-
approximated by just a few select

proton and neutron states?

These would not be single Slater 
determinants but linear combinations
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My tool for investigation:
The entanglement entropy

!
Ψ = cµν pµ

µν
∑ nν

Let any wavefunction have two components (i.e., 
proton and neutron components)

= “bipartite”

Find the singular-value-decomposition 
eigenvalues of cμν -- a basis independent 
characterization of the coupling

(See Amol Patwardhan’s talk)
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My tool for investigation:
The entanglement entropy

!
Ψ = cµν pµ

µν
∑ nν

Find the singular-value-decomposition 
eigenvalues of cμν :

!
ρµ ′µ = cµν

ν
∑ c ′µ νFind eigenvalues λi of

!!
S = − λi ln

i
∑ λi = −trρ lnρ

(not the usual density matrix)

Note these are proton and 
neutron many-body states
(linear combinations of 
Slater determinants)
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The entanglement entropy

!
Ψ = cµν pµ

µν
∑ nν

!!
S = − λi ln

i
∑ λi = −trρ lnρ

The entanglement entropy measures how 
correlated (‘entangled’) the two sectors are.
S=0 means uncorrelated.
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Now let’s turn to nuclei, with

!
Ψ = cµν pµ

µν
∑ nν
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Now let’s follow 
as isospin increases
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A=28 nuclei
in sd shell
with USDB

entanglement decreases as 
|Tz| increases
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USDB ”traceless” = s.p.e, monopoles removed

0 1 2 3 4
Tz

0
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4

S

Z=11, USDB
Z=11, QQ
Z=11, pairing

entanglement decreases as 
|Tz| increases

My conclusion: proton-neutron
factorization should work even 
better for N ≠ Z nuclei



Searching for n physics, LBL, Jan 8, 2020

0 5 10
Decomposed-state number

0.0001

0.001

0.01

0.1

Fr
ac

tio
n 

of
 w

av
ef

un
ct

io
n

20ne nn
20ne pp
28ne nn
28ne pp

We have written a code to take 
advantage of this (O. Gorton)

We want to find solutions to

where

We solve  

and  choose certain                 as basis for   
diagonalization;
our results with the entropy suggest we only need a few

!!Ĥ Ψ = E Ψ !!Ĥ = Ĥpp + Ĥnn + Ĥp

!!Ĥpp Ψp = Ep Ψp !!Ĥnn Ψn = En Ψn

!
Ψp Ψn

PNISM = proton-neutron interacting shell model
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Using BIGSTICK we construct many-proton states of good J

!!
Ψp , JpM = cµ pµ ,M

µ
∑

and the same for many-neutron states; these we couple 
together in a J-scheme code with fixed J for basis:

!!
Ψ J = cab Ψpa, Jp ⊗ Ψnb, Jn⎡

⎣
⎤
⎦

ab
∑

J

we find matrix elements of the Hamiltonian in basis of 
these states and diagonalize.  
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(Projected HF g.s. energy = -76.33 MeV)

KB3G interaction

M-scheme dim= 1 billion!
PNISM calculations done on a laptop!
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PNISM used 250 proton and 250 neutron levels (out of 4845 each)
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48Cr,  GX1A interaction

48Cr is a good test case, 
because it is rotational 

and we ascribe rotational 
motion to the proton-
neutron interaction
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We have yet to do applications, only 
“proof of principle.”

Sample application:
shells between 50 and 82 (0g7/2 2s1d 0h11/2)

129Cs: M-scheme dim 50 billion (haven’t tried!)

Proton dimension: 14,677
Neutron dimension: 646,430
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We have yet to do applications, only 
“proof of principle.”

Crazy-difficult isotope:
shells between 50 and 82 (0g7/2 2s1d 0h11/2)

132Nd: M-scheme dim 85 TRILLION

Proton dimension =Neutron dimension= 3.7 million
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Summary:

• Shell model codes are restricted in size of problem;
how to go further?

• BIGSTICK (and similar codes) use basis states which 
are simple outer products of proton, neutron states.

• Can we restrict ourselves to some subset of proton,
neutron states?

• Use entanglement entropy to investigate.

* Looks promising, especially for N ≠ Z
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Next steps:

• We have built a “weak entanglement code” PNISM

• Test transitions

• Make parallel/more efficient

• Investigate convergence

• Apply to currently intractable nuclides!
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To detect dark matter, 
one needs nuclear cross-sections.
For neutrino physics, nuclear cross-sections.
For neutrinoless bb decay, need nuclear matrix element
For parity/time-reversal violation (e.g. EDM), 
need nuclear matrix element….
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EXTRA SLIDES
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Example of entanglement entropy:
good angular momentum

Consider 2 spin-1/2 particles:

!↑↑ , ↑↓ , ↓↑ , ↓↓
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Example of entanglement entropy:
good angular momentum

Consider 2 spin-1/2 particles:

Consider total J=0 state:

then                               and 

!↑↑ , ↑↓ , ↓↑ , ↓↓

!!
J =0 = 1

2
↑↓ − ↓↑( )

!!

C =
0 + 1

2
− 1

2
0

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

!
ρµ ′µ = cµν

ν
∑ c ′µ ν
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Example of entanglement entropy:
good angular momentum

Consider total J=0 state:

then                               and

or  

Note trace ρ = 1.

!!
J =0 = 1

2
↑↓ − ↓↑( )

!!

C =
0 + 1

2
− 1

2
0

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟ !

ρµ ′µ = cµν
ν
∑ c ′µ ν

!
ρ =

1
2 0
0 1

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Example of entanglement entropy:
good angular momentum

Consider total J=0 state:

then                               and

or  

Note trace ρ = 1.

!!
J =0 = 1

2
↑↓ − ↓↑( )

!!

C =
0 + 1

2
− 1

2
0

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟ !

ρµ ′µ = cµν
ν
∑ c ′µ ν

!
ρ =

1
2 0
0 1

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Then entropy S = ln 2, 
which is the maximum.
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Example of entanglement entropy:
good angular momentum

Conversely, 

has

and  

Note trace ρ = 1.

!! J =1,M =1 = ↑↑

!!
C = 1 0

0 0
⎛

⎝⎜
⎞

⎠⎟

!
ρ = 1 0

0 0
⎛

⎝⎜
⎞

⎠⎟
Then entropy S = 0.
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USDB ”traceless” = s.p.e, monopoles removed

0 1 2 3 4
Tz

0

1

2

3

4

S

Z=11, USDB
Z=11, QQ
Z=11, pairing

entanglement decreases as 
|Tz| increases



Searching for n physics, LBL, Jan 8, 2020

Let’s decompose the 
wavefunction into 

eigenstates of Hpp and Hnn

That is, we take low-lying solutions 
of Hpp and Hnn and

then project full solutions onto 
them
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Solve 
!!
Hpp +Hnn +Hpn( )Ψ full = E Ψ full

!!
Hpp Ψp = Ep Ψp

then solve
!!Hnn Ψn = En Ψn

and compute P(p) = 
!!
Ψp Ψ full

2
= Cp ,n

2

n
∑

Expand 

!!
Ψ full = cp ,n

p ,n
∑ Ψp ⊗ Ψn
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Solve 
!!
Hpp +Hnn +Hpn( )Ψ full = E Ψ full

!!
Hpp Ψp = Ep Ψp

then solve
!!Hnn Ψn = En Ψn

and compute P(p) = 
!!
Ψp Ψ full

2
= Cp ,n

2

n
∑

Expand 

!!
Ψ full = cp ,n

p ,n
∑ Ψp ⊗ Ψn

I can do this efficiently using
the “Lanczos trick”
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!!
Ψ ,M = cµν pµ ,Mp

µν
∑ nν ,Mn =M −Mp

Although BIGSTICK is an M-scheme code

because H commutes with J2, the eigenstates have good J

!!
Ψ , JM = cµν pµ ,Mp

µν
∑ nν ,Mn =M −Mp

This is true even if only protons or only neutrons
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Technical details (if time allows)

Let H = Hpp + Hnn + Hpn

BIGSTICK: 
generate states |ap >, matrix elements < ap |Hpp |a’p >
and one body densities   < ap | c+

i cj |a’p >

generate states |bn >, matrix elements < bn |Hnn |b’n >
and one body densities   < bn | c+

i cj |b’n >

PNISM (proton-neutron interacting shell model)
read in the above and 
generate matrix elements < ap , bn |Hpn |a’p , b’n>
using proton, neutron one-body densities

Diagonalize Hpp + Hnn + Hpn in truncated space.
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