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Timeline
❖ 1973 - QCD introduced

❖ Early successes in high energy scattering.

❖ Nuclear physics in principle is also a consequence…

❖ 2012 - LQCD calculation of 2 nucleon states with non-physical heavy pions to 
reduce noise. - NPLQCD      Beane et al.,  Phys. Rev. D85 (2012)

❖ Early trial run.

❖ 2018 - “A per-cent-level determination of the nucleon axial coupling from 
quantum chromodynamics.” ,   Chang et al., Nature 558, 91-94 (2018)

❖ Single nucleon calculation using a massive supercomputer!

❖ 202? - LQCD calculation of the spectrum of two nucleons at the physical point in a 
finite volume.

❖ LQCD computation are really hard!!
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Lattice Quantum Chromo Dynamics (LQCD)

❖ A lattice calculation is non-
perturbative, but …

❖ The no free lunch rule creates 
new problems.

❖ Finite volume effects.

❖ Discretization errors.

❖ Observables are evaluated by 
expensive Monte-Carlo 
integration over field 
configurations.

❖ Statistical uncertainty is  
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Wick’s Vision

Nonrelativistic Nuclear 
Structure  

(model dependent)

Cold Lattice QCD (exact, 
but with a sign problem 

growing with A)
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Lattice QCD is Really Hard

❖ What is the minimum we can get away with computing?

❖ NN Scattering states in a finite volume.

❖ Constructing a high momentum potential from this 
scattering data still takes way too much data.
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❖ Answer:   Directly fit a suitable low momentum effective 
theory (ET) to LQCD scattering data. 



Effective Theory
❖ Ground Rules of Effective Theory

❖ Formulated in a relevant subspace P (with complementary subspace Q) of the 
full Hilbert space.   In the HO basis we use a quanta cutoff Λ for P.

❖ Respects the symmetries of the underlying full theory.

❖ Contains a systematic  parameterized expansion such that controlled 
approximations to the full P+Q theory are calculable in P.   Approximations are 
organized by order (power counting).

❖ The parameters of the expansion, known as Low Energy Constants (LECs), are 
in principle determinable (in practice usually too hard) from the full theory, 
but importantly may also be fit to observables.

❖ In the HO basis P is a function P(b,Λ) of the HO length scale and Λ

❖ Results do not depend on b and Λ, but the order may have to be increased.
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HOBET 
Harmonic-Oscillator-Based Effect Theory

❖ Tom Luu explained the the Bloch-Horowitz equation 
yesterday.

❖ The perturbative expansion of the boxed propagator has 
bad convergence, caused by the kinetic energy, T, which 
is a hopping operator in the HO basis. (Haxton, Song, 
Luu)

❖ The form on the right isolates this bad behavior so that 
kinetic energy scattering can be analytically computed.
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HOBET 
Harmonic-Oscillator-Based Effect Theory

❖ Green’s function acts 
only on edge states, 
producing a 
superposition of edge 
and higher quanta 
states.

❖ The Green’s function 
boundary condition is 
the phase shift.
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HOBET 
Harmonic-Oscillator-Based Effect Theory

❖ The fourth term is capped on both ends by the short 
range operator V and is therefore short range.
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V +V 1
E −QH

QV →Vπ
IR +Vδ❖ We make The ET Substitution:

Vδ
S = aLO

S δ (r)+ aNLO
S Â†δ (r)+δ (r)Â( )+ aNLOS ,02 Â†2δ (r)+δ (r)Â2( )+!

Vδ
SD = aNLO

SD a†⊗ a†( )δ r( )+δ (r) !a⊗ !a( )⎡⎣ ⎤⎦
2( )
+ ...⎡

⎣⎢
⎤
⎦⎥
⊙ σ 1⊗σ 2[ ] 2( )

❖  is the long range part of not correctable by .
❖  is the systematic expansion.

VπIR V Vδ

Vδ

Â = !a⊙ "a( ) lowers nodal n, a = ax ,ay ,az( ) is a vector lowering operator.
!



Fitting LECs

❖ The mismatch must be due to LEC values.  
❖ Repair by minimizing

❖ This is a typical convergence  
plot showing the order by  
order improvement in the  
eigenvalue match. 

❖  is continuous across E=0.  
continuum -> bound states
Heff

W i( ) ε i − Ei( )
i∈samples
∑ 2

/σ i
2

❖ The BH equation is energy self consistent:  Heff
full P ψ i = EiP ψ i

❖ At fixed order we have a nearby eigenstate.
Heff LECs( ) P ′ψ i = ε iP ′ψ i
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Continuum Wave Functions
❖ ET Wave functions 

(long black dashes) 
should match 
projections of 
numerical solutions 
with Av18 (dotted 
colored lines)
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❖ The energies chosen in the plot are deliberately chosen 
to be distinct from the (Ei,𝛿i) used in fitting the LECs.

❖ Phase shifts are recovered by solving for 𝛿 in  
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Predicting the Deuteron
❖ Prediction of Deuteron 

WF from phase shift fit.

❖ ET Wave functions 
should match 
projections of numerical 
solutions with Av18 - 
solid blue lines
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❖ The matrix elements are continuous in energy across E=0, one can fit V𝛿 in 
the continuum and determine bound states. 

❖ Using the same phase shift data we get

❖ With pionful VIR=OPEP, at N3LO Ebinding=-2.2278 MeV

❖ With pionless VIR=0, at N3LO Ebinding=-2.0690 MeV

P ψS
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LECs →Phase Shifts
❖ Use fixed LECs at energy 

E, dial phase shift 
produce eigenvalue 
match to E.

❖ Even NLO 3P1 fit 
produces a good 
reproduction of phase 
shifts.

❖ A very small number of 
LECs reproduce phase 
shifts.   P channel NLO 
has 1, other N3LO have 4.
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Connecting to LQCD
❖ Lüscher’s method can be used to map the spectrum of two 

nucleons to phase shifts. 

❖ Use traditional path:   collect  
enough phase shift data in multiple  
channels and use it to fit the  
HOBET effective interaction.

❖ Sources of error

❖ Tail of interaction exceeding L/2.

❖ Divergences of the zeta function in  
higher order terms of Lüscher’s formula.
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HOBET in Periodic Volumes
❖ Phase shifts as boundary conditions are  

replaced by periodic boundary conditions.

❖ Easier to construct in Cartesian HO  
basis.

❖ Key Observation:  V𝛿 is short range and isolated from the boundary 
conditions by Green’s functions.   It is the same object in infinite volume, or 
periodic volumes.   

❖ We can use Cartesian-spherical brackets to relate V𝛿 in both domains.   The 
Cartesian V𝛿 can be written in terms of the infinite volume spherical LECs!

❖ If VIR is longer range than L/2, introduce images of VIR.

❖ This is a key advantage over Lüscher’s method which requires a free 
propagation region outside the range of V, but inside the volume.
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Slice of 3D Cartesian State



Evaluate by Inserting Periodic Basis

❖ VIR matrix elements are the most expensive part of Heff
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!′n E
E −TQ

T +T Q
E
T⎡

⎣⎢
⎤
⎦⎥

E
E −QT

P !n = E δ !′n !n − b!′n !n( )Sum T to all orders:

!′n EGTQVIREGQT
!n = b!′n ,!s

! ′m , !m,!s ,
!
t

∑ E
E − λ ! ′m

!s ! ′m ! ′m VIR
!m !m

!
t E
E − λ !m

b!t ,!n

❖ All pieces are precomputed, but sum is still very large.

❖ For                 GQT=1, which can be used to check results.!′n , !n ∈P−

bij = P E
E −T

P
⎧
⎨
⎩

⎫
⎬
⎭ij

−1

!m, ! ′m are discrete momentum states; s,t are HO states



Testing Plan
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HΨ=EΨ
In Box
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A1 
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Heff
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phase  shifts

Choose  
V

=?

Traditional 
generation of 
phase shifts



Test Setup:  Range(V)>L/2

❖ Periodic images of the potential make a 
contribution.

❖ Continuum extrapolation done on N^3 
lattice with N={350,400,450}. 

❖ Infinite volume bound state at  
-4.052 MeV.

❖ LECs are fit using states with L=0 overlap. 18
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Phase Shift Setup
❖ Reference phase shifts for L=0 and L=4 are directly calculated from V.

❖ HOBET S-channel phase shifts are computed from the N3LO LECs 
that reproduce the spectrum.  The phase shift is found by dialing the 
phase shift to produce energy self consistency.

❖ Lüscher’s method phase shifts come from the formula

❖ An effective range expansion up to  k6 is used to interpolate.

❖ For simplicity the second term is evaluated using the L=4 phase shift 
directly determined from V.
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det
cotδ 0 0
0 cotδ 4

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

F0;0
FV ,A1

+( ) F0;4
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⎥
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Luu, Savage,  
arXiv:1101.3347



Phase Shift Results

The Vtest column 
should be 
considered the 
reference.
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❖ ET bound state found at -4.066 MeV v.s. -4.052 MeV (directly from 
V).

❖ HOBET errors are from FV solution + Momentum basis cutoff.

❖ Lüscher errors are from Range(V) > L/2 and magnification of errors 
by Zeta function poles.

L = 14.3 fm
mπL = 10



A-Body Effective Hamiltonian
❖ We want the same thing at the A-body level as at the 2-body level  

                                           

❖   The effective potential has the same form as in the two body case    

                    

❖ Now pick out the contribution purely of particles 1 and 2.  (sum over pairs later)  

                

❖ The projection operators have a  
decomposition.  With fixed, and  
Become statements about the {1,2} pair.

❖

HA
effPA Ψ i = EiPA Ψ i PA Λ( ) − total quanta cutoff

VA
eff = PA

ΛSMEG
TQA

ΛSM VA +VA
1

E −QA
ΛSMHA

QA
ΛSMVA

⎡

⎣
⎢

⎤

⎦
⎥EGQA

ΛSMT
PA

ΛSM

VA,12
eff = PA

ΛSMEG
T12QA

ΛSM V12 +V12
1

E −QA
ΛSMH12

QA
ΛSMV12

⎡

⎣
⎢

⎤

⎦
⎥EGQA

ΛSMT12
PA

ΛSM

χ QA PA

VA,12
eff = P12

A χ( )P12 ΛSM − χ( )E
χ=0

ΛSM

∑ GT12Q12 ΛSM−χ( ) V12 +V12
1

E −Q12 ΛSM − χ( )H12

Q12 ΛSM − χ( )V12
⎡

⎣
⎢

⎤

⎦
⎥EGQ12 ΛSM−χ( )T12P12 ΛSM − χ( )

→ P12
A χ( )V12eff ΛSM − χ( )

χ=0

ΛSM

∑ - Substituting the HOBET 2-body effective interaction

P12
A χ( ) is 1when !Λ2 +…+ !ΛA−1 = χ

PA
ΛSM = P12

A χ( )P12 ΛSM − χ( )
χ=0

ΛSM

∑



Conclusion
❖ Wick’s vision of building a bridge between  

 QCD and nuclear physics is nearing  
realization

❖ Minimization of LQCD calculations to 2,  
and possibly 3 body finite volume  
scattering spectra

❖ Fit HOBET LECs in finite volumes to match spectra.

❖ The same LEC values configure the infinite volume spherical effective 
interaction.

❖ The shell model effective Hamiltonian can be constructed as a cluster 
expansion from the 2 and 3 body effective interactions.
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Phys. Lett. B 987, McElvain, Haxton (2019)
arXiv:1910.07961, Drischler, Haxton, McElvain, Mereghetti,  
                 Nicholson, Vranas,  Walker-Loud (2019)
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Higher Body Contributions
❖ How do we include the induced 3-body contributions?  

                  

❖ The same steps work again, this time with spectators to the involved 3 particles.   

❖ The sum of the resulting 3 body contributions will contain the 2-body contributions + induced 3-body + 
the effective interaction associated with .    

❖ Dropping already included 2-body pieces yields 

       

❖ The LECs of would be fit to 3-body observables not fully predicted by the 2-body part of the cluster 
expansion.

❖ The kinetic energy part should be calculated once at the highest cluster level.

❖ For modest A the Green’s functions can be evaluated via matrix inversion in P, for larger A there are 
Lanczos methods available.  

VA =
1

A − 2
Vij +Vjk +Vik( )

i< j<k
∑ +Vijk

V123

V123
eff Λ( ) = P123Λ

E
E −T123Q123

Λ V123
IR +Vδ123⎡⎣ ⎤⎦

E
E −Q123

Λ T123
P123

Λ

Vδ123
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Induced Mixing
❖ Setup: spherical well potential in a 

periodic finite volume.

❖ The wave function is sampled on sphere 
outside potential and displayed as a 
radial displacement from a unit sphere.

❖ Higher order structure induced by 
periodic boundary conditions is 
obvious.

❖ All this mixing is isolated in E/(E-QT) 
Green’s functions.
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Generating Veff for Multiple Λ

❖ Suppose ,  then we can fit the HOBET interaction 
in and then use the BH equation to reduce to all 
needed spaces.  
            

❖ It seems like there may be an advantage in fitting the ET 
expansion in a larger P that will be used …

ΛSM = 6

Λ = 10

H eff Λ− χ( ) = P Λ− χ( )HΛ
eff E
E −Q Λ− χ( )HΛ

eff P Λ− χ( )


