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Today’s talk

Introduction to neutrino oscillations (effective one-particle
description)

Neutrino many-body Hamiltonian and its symmetries,
eigenvalues, and eigenstates

Using eigenvalues and eigenstates to study adiabatic flavor
evolution of a neutrino many-body system

Measures to quantify entanglement in the system

Comparison between flavor evolution in the many-body
approach and in the mean-field description
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Gritsev
Phys. Rev. B 83, 235124 (2011), arXiv:1103.0472

Pieter W. Claeys
arxiv:1809.04447 (PhD thesis)

Amol V. Patwardhan Entanglement and collective neutrino oscillations 5/30 LBNL Wick Symposium



One-particle description Many-body Hamiltonian Flavor evolution & entanglement Comparison w/ mean field

Outline

1 Neutrino oscillations: effective one-particle description

2 Many-body treatment of neutrino oscillations

3 Adiabatic evolution and entanglement measures

4 Comparison with mean-field calculations
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Neutrino oscillations (in vacuum)

Neutrino weak-interaction (flavor) eigenstates not aligned
with propagation (energy/mass) eigenstates

|νe〉 = cos θ |ν1〉+ sin θ |ν2〉
|νx〉 = − sin θ |ν1〉+ cos θ |ν2〉

As neutrinos propagate, mass eigenstates gather quantum
mechanical phase at different rates, leading to oscillations

Pex = sin2 2θ sin2
(

∆m2L

4Eν

)
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Neutrino flavor evolution: matter effects

Matter backgrounds (electrons, nucleons, etc.) modify flavor
evolution: “effective mass” through neutrino forward scattering.
Mass level crossing Hνeνe = Hνxνx =⇒ MSW resonance
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Neutrino-neutrino forward scattering
Nonlinearity: Hamiltonian driving the flavor evolution depends
on the flavor composition

Hνν =
√

2GF
∑
α

[∫
ν

dnν,α ρν,α(p′)(1− p̂ · p̂′) −
∫
ν̄

dnν̄,α ρν̄,α(p′)(1− p̂ · p̂′)
]

Important at large neutrino number densities/fluxes: e.g.,
supernovae, compact object mergers, early universe
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Figure: Left: spectral swap (Duan et al., 2006). Right: matter-neutrino
resonance (Malkus et al., 2014).
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Outline

1 Neutrino oscillations: effective one-particle description

2 Many-body treatment of neutrino oscillations

3 Adiabatic evolution and entanglement measures

4 Comparison with mean-field calculations
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Neutrino oscillations: flavor/mass isospin operators

Denote Fermionic operators for neutrino flavor/mass states as
aα(p), aj(p), where α = e, x, and j = 1, 2

ae(p) = cos θ a1(p) + sin θ a2(p)
ax(p) = − sin θ a1(p) + cos θ a2(p)

Introduce the mass-basis isospin operators

J+
p = a†1(p)a2(p) , J−p = a†2(p)a1(p) ,

Jzp = 1
2
(
a†1(p)a1(p)− a†2(p)a2(p)

)
,

which obey the usual SU(2) commutation relations

[J+
p , J

−
q ] = 2δpqJ

z
p , [Jzp, J±q ] = ±δpqJ

±
p .
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Neutrino oscillations: many-body Hamiltonian

Vacuum oscillations:

Hvac =
∑

p

(
m2

1
2p a

†
1(p)a1(p) + m2

2
2p a

†
2(p)a2(p)

)
=
∑
ω

ω ~B · ~Jω ,

where ω = δm2

2|p| , ~Jω =
∑

|p| = δm2
2ω

~Jp, and

~B = (0, 0,−1)mass = (sin 2θ, 0,− cos 2θ)flavor.

Neutrino-neutrino interactions

Hνν =
√

2GF
V

∑
p,q

(1− cosϑpq) ~Jp · ~Jq .
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Neutrino Hamiltonian: single-angle approximation

Suitable averaging over the angle ϑpq to simplify the problem

Hνν ≈
√

2GF
V
〈(1− cosϑpq)〉 ~J · ~J (includes J2

p terms)

≡ µ(r) ~J · ~J, where ~J =
∑
ω

~Jω

Many-body neutrino Hamiltonian with vacuum and ν–ν
interactions (two-flavor, single-angle):

Hν =
M∑
p=1

ωp ~B · ~Jp + µ(r) ~J · ~J,

where p is an index for the ωs in the system, M in number
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Mean-field (random phase) approximation

ν̄β(
~p′)

ν̄β(~p)να(~k′)

να(~k) ν̄β(
~p′)

ν̄β(~p)

να(~k′)

να(~k)
ν̄α(~p′)

ν̄β(~p)να(~k′)

νβ(~k) ν̄α(~p′)

ν̄β(~p)

να(~k′)

νβ(~k)

Figure: Volpe et al., 2013

In an effective one-particle approximation, a single neutrino is
described as interacting with an average potential created by
all other particles in the medium (including neutrinos)

Operator product O1O2 approximated as

O1O2 ∼ O1〈O2〉+ 〈O1〉O2 − 〈O1〉〈O2〉.

Above expectation values are calculated w.r.t state |Ψ〉 which
satisfies 〈O1O2〉 = 〈O1〉〈O2〉
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Mean-field (random phase) approximation

This method yields the effective one-particle neutrino
Hamiltonian

H ∼ HRPA =
∑
ω

ω ~B · ~Jω + µ~P · ~J ,

where ~Pω = 2〈 ~Jω〉 is the “Polarization vector”, and
~P =

∑
ω
~Pω

The self-consistency requirement of the mean-field approach
then implies that ~Pω must satisfy

d

dt
~Pω = (ω ~B + µ~P )× ~Pω
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Neutrino Hamiltonian: symmetries and invariants

There exist N mutually commuting operators hp:

hp = −Jzp + 2µ
N∑
q=1
q 6=p

~Jp · ~Jq
ωp − ωq

(“Gaudin magnets”)

[hp, hq] = 0 and Hν =
∑
p ωphp, so that [H,hp] = 0

In addition, Jz =
∑
p J

z
p also commutes with the Hamiltonian

=⇒ nν1 − nν2 is a conserved quantity

Hamiltonian exhibits numerous energy level crossings—
the invariants can be used to show the validity of the
adiabatic approximation if µ varies smoothly
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Neutrino Hamiltonian: eigenvalues and eigenstates

Eigenvalues and eigenstates obtained using procedure derived from
Richardson-Gaudin diagonalization (a.k.a. “Bethe-Ansatz” method)
— Patwardhan et al., Phys. Rev. D 99, 123013 (2019)

For a system where jp = 1/2 ∀p, the eigenproblem can be mapped
onto a system of coupled quadratic equations:

Λ̃2
q + Λ̃q = µ

N∑
p=1
p 6=q

Λ̃q − Λ̃p
ωq − ωp

Λ̃p are related to eigenvalues of the invariants hp. Bethe-Ansatz
equations equivalent to polynomial relations between invariants hp
(Cervia et al., arXiv:1905.00082)

Trivial solution for µ = 0: each Λ̃q = 0 or −1. Numerical solutions
for µ > 0 using homotopy continuation + Newton-Raphson
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Neutrino Hamiltonian: eigenvalues and eigenstates

In terms of the parameters Λq = Λ̃q/µ, the eigenvalues are given by

E(Λ1, . . . ,ΛN ) = −
∑
p

ωp
2 + µ

N

2

(
N

2 + 1
)
− µ

∑
p

ωpΛp.

Eigenstates are given by eκ |ν1, . . . , ν1〉, where the operator eκ is
the κ-th elementary symmetric polynomial of the Gaudin lowering
operators. Can be calculated by recursively applying the following
identities, for k = 1, . . . , κ.

Pf (Λ1, . . . ,ΛN ) =
M∑
p1=1
· · ·

M∑
pf=1

J−p1
· · · J−pf

f∑
m=1

Λpm
f∏
l=1
l 6=m

1
ωpl − ωpm

.

ek(Λ1, . . . ,ΛN ) = 1
k

k∑
i=1

(−1)i−1ek−i Pi,
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Outline

1 Neutrino oscillations: effective one-particle description

2 Many-body treatment of neutrino oscillations

3 Adiabatic evolution and entanglement measures

4 Comparison with mean-field calculations
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Adiabatic evolution of a many-body neutrino system

Eigenvalues and eigenvectors facilitate calculating the
adiabatic evolution of the many-body neutrino system,
starting from any given initial condition, as µ is varied

Consider an initial many-body state, |Ψ0〉 ≡ |Ψ(µ0)〉
Example: in the (two-)flavor-basis, |νeνxνeνe〉

May be decomposed into the basis of energy eigenstates:
|Ψ(µ0)〉 =

∑
n cn |en(µ0)〉

If µ were to change sufficiently slowly then the system
adiabatically evolves into

|Ψ(µ)〉 '
∑
n

cne
−i
∫ µ
µ0

En(µ′)
dµ′/dt dµ

′
|en(µ)〉
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Quantum entanglement in many-body neutrino systems

In general, for µ > 0, the eigenstates of the Hamiltonian are
not factorizable into tensor products of individual neutrino
states, and may therefore be described as entangled

A system may initially start in a pure state—which happens to
be a particular superposition of energy eigenstates. However,
as the coefficients describing the superposition change with
time (as do the eigenstates themselves), the system can
become entangled. This is a feature unique to many-body
systems, and cannot be observed in mean-field calculations

Such entanglement may be quantified in terms of measures
such as entropy of entanglement, length of individual neutrino
polarization vectors, etc.
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Summary of entanglement measures
Density Matrix, Polarization Vector, & Entanglement Entropy

Consider a pure, many-body neutrino state ρ = |Ψ〉〈Ψ|.
Single-neutrino reduced density matrix: ρq ≡ Tr1,...,q̂,...,N [ρ], given
by (̂ denotes exclusion)

ρq =
2∑

i1,...,îq ,...,iN=1

〈νi1 . . . ν̂iq . . . νiN |ρ|νi1 . . . ν̂iq . . . νiN 〉 ,

S(ωq), Entropy of entanglement between neutrino q and rest:

S(ωq) = −Tr[ρq log ρq]

“Polarization vector” of neutrino q, ~P (ωq) = 2 〈 ~Jq〉, related to
the reduced density matrix as:

ρq = 1
2
(
I + ~P (ωq) · ~σ

)
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Relations between entanglement measures

Entanglement entropy has a one-to-one, inverse relationship with
the magnitude of the polarization vector

S(Pq) = −1− Pq
2 log

(1− Pq
2

)
− 1 + Pq

2 log
(1 + Pq

2

)
with Pq = |~P (ωq)|

P = 1 ⇐⇒ S = 0 (Unentangled)
P = 0 ⇐⇒ S = log(2) (Maximally Entangled)
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Outline

1 Neutrino oscillations: effective one-particle description

2 Many-body treatment of neutrino oscillations

3 Adiabatic evolution and entanglement measures

4 Comparison with mean-field calculations
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Example: evolution of all-electron flavor initial state
Comparison of many-body and mean-field calculations

System with frequencies ω1, . . . , ωN where ωp = pω0

Evolve from |Ψ0〉 = |νe . . . νe〉 for systems of varying sizes
(N = 2, . . . , 9)
As µ ∼ 0 (r � Rν), H diagonal in mass-basis, therefore plot
final spectra in the mass-basis: Pz = n(ν1)− n(ν2)
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Correlation of Pz-discrepancies and entanglement entropy
Calculate ∆Pz(ω) ≡ |PMF

z (ω)− PMB
z (ω)| at r � Rν (i.e., µ ≈ 0)

For N = 4: all initial conditions with definite flavor νe, νx
(e.g., |νe, νx, νx, νx〉)
For N = 8: same ICs as N = 4, but with four additional νe
appended to left or right of spectrum

(N = 4)
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Trendline: y(S) ≡ PMF(S)− PMB(S) = 1− P (S)
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Example: initial condition with both neutrino flavors
Comparison of final Pz spectra between many-body and mean-field

Evolve |Ψ0〉 = |νeνeνeνeνxνxνxνx〉 until r � Rν
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[Cervia et al., Phys. Rev. D 100, 083001 (2019)]

Spectral swap-like features persist in the many-body calculations,
but are less sharp relative to mean-field calculations
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Comparison of Pz evolution with r

Same initial conditions, |Ψ0〉 = |νeνeνeνeνxνxνxνx〉
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Conclusions

Calculations of collective neutrino flavor evolution typically
rely on a ‘mean-field’, i.e., effective one-particle description

Important to test the efficacy and/or limitations of the
mean-field by performing many-body calculations

Evolution in the many-body case can be studied by calculating
the eigenvalues and eigenvectors of the Hamiltonian by solving
the Bethe Ansatz equations (or an equivalent set of equations)

For certain simple systems, qualititive differences in flavor
evolution observed between many-body and mean-field
treatments, resulting from entangled states which are absent
in the mean-field limit
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Future Work
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Next steps in calculations
Larger N + inclusion of ν̄ (ω < 0)
Matter (MSW) potential
Multiple neutrinos in frequency bins (jp > 1/2)
Beyond single-angle approximation µ→ µpq

Hierarchical incorporation of multi-particle correlations
Couple to baryons—how are nucleosynthetic yields affected?
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Bonus slides
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Different initial condition: |Ψ0〉 = |νeνeνeνeνeνeνeνx〉
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Comparison of Intermediate Pz Spectra
While r & Rν , N = 2 mono-flavor initially

|Ψ0〉 = |νeνe〉, and observe Pz before r � Rν
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Comparison of Intermediate Pz Spectra
While r & Rν , N = 2 different-flavor initially

|Ψ0〉 = |νeνx〉, and observe Pz before r � Rν
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Entanglement in Individual Eigenstates
Eigenstates for N = 5, entanglement of N -th ν with the rest
Hightest/lowest-weight states are trivial
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