

U.S. MAGNET DEVELOPMENT PROGRAM

CCT Magnet Development: Results and Next Steps

Soren Prestemon - For the US MDP Team US Magnet Development Program Lawrence Berkeley National Laboratory

Outline

- •Short review of the original MDP plans related to the Canted Cos-Theta concept
- •Review of main CCT design features
- •Overview of CCTs tested to-date
- •Design details and test results of CCT4
- Lessons-learned and design modifications of CCT5
- •Test results of CCT5
- Lessons-learned and development of subscale CCTs
- •HTS developments
- •Summary

CCT Magnet Development: Results and Next Steps

2

The program has been structured to align with the primary goals

Magnets	Lead	
Cosine-theta 4-layer	Sasha Zlobin	Area I
Canted Cosine theta	Diego Arbelaez	
Bi2212 dipoles	Tengming Shen	
REBCO dipoles	Xiaorong Wang	

Technology area	LBNL lead	FN.
Modeling & Simulation	Diego Arbelaez	Va
Training and diagnostics	Maxim Martchevsky	St
Instrumentation and quench protection	Maxim Martchevsky	Tł
Material studies – superconductor and structural materials properties	lan Pong	

Cond Proc and R&D Lance Cooley

US Magnet Development Program (MDP) Goals:

GOAL 1:

Explore the performance limits of Nb₃Sn accelerator magnets with a focus on minimizing the required operating margin and significantly reducing or eliminating training.

GOAL 2:

Develop and demonstrate an HTS accelerator magnet with a self-field of 5T or greater compatible with operation in a hybrid LTS/HTS magnet for fields beyond 16T.

GOAL 3:

Investigate fundamental aspects of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction.

GOAL 4:

Pursue Nb₃Sn and HTS conductor R&D with clear targets to increase performance and reduce the cost of accelerator magnets.

Recap of the "CCT concept" and motivation for its investigation

- "Canted" windings in opposing directions produce dipole field (excellent field quality) **o** Solenoidal field components cancel (cost efficiency) •Windings are placed in a mandrel with grooves - Ribs in mandrel intercept Lorentz force leading to substantially reduced azimuthal stress –limiting case of "stress management" •Ease of fabrication and minimal tooling can lead to reduced cost
- •Fabrication methods and modularity of approach leads to natural extension for HTS materials

Iransverse current density with cos-theta distribution approaches a perfect dipole current density distribution

Area I: Nb₃Sn magnets

- Our focus has been on:
 - The Cos-t demonstrator
 - Investigation of the CCT concept

Develop innovative

CCT Magnet Development: Results and Next Steps

The MDP Nb₃Sn magnet efforts had a two-pronged approach, based on ongoing efforts at the time and limited funding of the program

7	2018		2019				
s-theta technology to its limit with newest conductor and structure							
Preload mo	ds 15 T with improvements	Co	s-theta 4-layer 16 T				
nd Impact of prei training	oad on	Opt	timized 16 T design as baseline				
ology issues at h	niah field						
echnology issues at high field							
Focus on training	Focus of margin Prepare HTS ins	on e for serts	HTS insert training				
	Preload mod Impact of prelo Ind Impact of prel	7 2018 mit with newest conductor and structure Preload mods In preload on training Impact of preload on training Impact of preload on training Focus at high field Focus on training Focus	7 2018 init with newest conductor and structure Preload mods 15 T with improvements Co ind Impact of preload on training Op ology issues at high field Op sues at high field Focus on margin Prepare for HTS inserts				

A systematic process was undertaken to develop the CCT technology

CCT1

- 2.5 T short-sample dipole
- 50 mm clear bore
- 8 strd. NbTi cable
- not impregnated
- 11/2013: tested up to 2.5 T

CCT2

- 5.3 T short-sample dipole
- 90 mm clear bore
- 23 strd. NbTi cable (0.8 mm SSC Inner)
- epoxy impregnated
- 5/2015: tested up to 4.7 T

CCT1

CCT3/4

CCT3/4

• 10.5 T bore field at round wire short-sample (RRP 54/61) 90 mm clear bore

CCT3 03/2016: reached bore field=7.4 T (conductor damage)

CCT4 08/2017: reached bore field=9.1 T (substantial training)

CCT5

9.7 T bore field at round wire short-sample (RRP 108/127) • 90 mm clear bore

• 10/2018: Achieved 8.51T (87.7% short-sample)

• Still substantial training, but improved from CCT4

CCT4 further developed Nb₃Sn CCT techniques and tooling

•Aluminum Bronze mandrels incorporate features for stress management and cable positioning Minimal tooling is required for heat treatment and epoxy impregnation **Coil Impregnation**

Machined Mandrel

Heat Treatment with SS Sheet and Clamps

CCT Magnet Development: Results and Next Steps

Coil Winding

CCT4 – Heat Treatment and Assembly

- •Copper wire is used to force the cable to the bottom of the channel
- •Mandrel is secured with hose clamps
- •Cable is below mandrel surface after heat treatment
- •Layers are wrapped with G10 sheets and inserted into the outer layer and shell

CCT4 Heat Treatment Configuration

CCT Magnet Development: Results and Next Steps

Cable Position After Heat Treatment

CCT4 Assembly

CCT4

CCT4 Magnet Impregnation with simple tooling

- •Coils and shell assembly is impregnated with epoxy
- •Simple tooling is used to create a seal from the bore to the ends of the shell
- Inside of outer layer and shell were mold-released to avoid energy release from delamination at the interfaces
- •Next Step: Development of individual layer potting and assembly is under way

CCT4 Coil Assembly

CCT Magnet Development: Results and Next Steps

Sealing End Caps

- •Reached 86% of round wire short sample after 85 quenches
- •Maximum current is 16.7 kA
- •Maximum bore field is 9.14 T (90 mm aperture)
- •Magnet exhibits long training but good memory after thermal cycle

CCT4 Results Lead to Focus on Training Reduction for CCT5

Lessons-learned

- Two "regimes" of training, and acoustic signal analysis, suggest epoxy micro-cracking may be source of early quenches
- Interface between layers, and between outer layer and shell, complicate assembly and inhibit disassembly/reassembly

lessons—learned from CCT4

CCT3 = >CCT4

 Modifications focused on mitigating conductor damage

CCT4 = > CCT5

Modifications focused on addressing training, assembly improvements

Bore size [mm]	
Groove design	CC
Conductor	
HT Temp [C]	
Potting configuration	-
Ероху	
Layer-to-layer interface	

CCT5 design incorporates a number of modifications based on

Motivation

- o Individual potting of layers is desirable since magnet can be assembled and disassembled after testing
- Faster turnaround for R&D if only one layer needs to be fabricated
- Damaged or problematic layer can be replaced 0
- Layers can be reused for a four or more layer magnet

Sealing end Caps are the only non-consumable component

Potting of Individual Layers opens up design space

Release Film Leaves Clean Surface

Porous Flow Media for Epoxy Flow

CCT Magnet Development: Results and Next Steps

Shrink Tube Method

Separately-potted layers enables/requires mechanical coupling of system: "Bend and Shim" Method for Coupling Layers

•Contact location between layers is controlled by using shims and Kapton bags that are filled with glass and epoxy

- Allows for control of contact location 0
- Fracture in interface epoxy does not propagate to the coil 0
- Improved cooling at the pole regions from direct contact with LHe 0

releasing bending pressure

CCT Magnet Development: Results and Next Steps

•Directional preload to reduce energized stress can be applied by bending layers or shell, filling and curing epoxy in bent state,

CCT5 Instrumentation includes mix of "old" and "new" diagnostics

- •Voltage taps at every 5th turn in inner layer (sparse on outer layer)
- •Acoustic sensors at coil ends and inside of the bore (new development) •Strain gages on shell
- •Spot heater with associated voltage taps and thermometer in groove

CCT Magnet Development: Results and Next Steps

Quench Localization With Acoustic Sensors

CCT5 Shows Initial Improvement in Training Followed by **Similar Behavior to CCT4**

•CCT4 conductor has higher Ic (CCT4: 54/61 RRP, CCT5: 108/127 RRP) •First quench at 69% of short sample, magnet reached 88% of short sample after 59 training quenches

•After initial improvement training rate is similar to CCT4

•After approx. quench #20 there are many detraining quenches with large drops in quench current (similar to CCT4 after approx. quench #30)

CCT4 Training Behavior

CCT5 Training Behavior

Diagnostics are critical for understanding of magnet performance and to provide feedback to magnet design

ale to the first structure of the second structure of

- •Improvement in early training (e.g. first quench current), but similar training after initial section Initial improvement likely due to change of epoxy and interface condition between layers
- •All quenches in layer 1
- •Significant changes to epoxy and interface between layers, yet similar training after initial improvement
 - 0

•Magnet was successfully disassemble after testing

This suggests that we focus on stress in cable and cable/groove interface (plan for subscale magnet testing) O Surface quality for bonding is known to be poor due to residue deposit on the mandrel surface after heat treatment

Ongoing work – look at "local margin" and acoustic energy deposition

ANSYS, Opera, and strain scaling fit are combined to calculate Ic(ε,T,B) at every conductor mesh node

Next steps: a subscale program for CCT is underway to rapidly investigate technical understanding

Motivation

- Allows for faster turn-around to understand CCT behavior 0
- Can be tested in small cryostat 0

•Design

- 5.2 T bore field and small mandrels and cables 0
- **Operate at higher Lorentz force on the conductor** 0
- Normal stress is comparable to that for full size two layer models 0
- Shear Stress is about half of the full size model 0
- Stresses are substantially above level where training starts in full size 2-layer models 0

•Better understanding of CCT magnets

- **Testing of epoxies and interfaces** 0
- Mandrel deformation during heat treatment 0
- o Test of assembly methods
- **Test of new instrumentation methods**

- shear vs normal stress
- of different epoxies
- cryostats with faster turn-around

CCT Magnet Development: Results and Next Steps

Multiple "coils" are currently in production – operations can be done in parallel to speed up development and testing

The US MDP has been pursuing HTS accelerator magnet technology through close collaboration with University and Industry collaborators

•The MDP HTS accelerator magnet technology program has worked to tailor superconductor, cable, and magnet technology for HEP applications

- •Focus to-date has been on core technology development
 - o Conductor and cable characterization
 - **o** Fabrication techniques and processes
 - o Test behavior: V-I transition, performance reproducibility, etc.

2016	20	7 2018		2019		
rogram	2 T, 50mm b	ore dipole		2T in 15T, 0.5 m long demo dipole		
y exploration & sign studies		1 T, 50 mm bore dipole		2 d	2T in 15T, 0.5 m long demo dipole	
		2 T, 20 K conduction cooled demonstration dipole				

Explore other HEP Stewardship applications: Fusion, Medical, Light Sources, etc.

The "stress management" nature of the CCT concept has advantages for HTS inserts as well – REBCO example

Concept/technology development

complexities

- 0
- 0
- 0 technology towards higher fields
- **Roadmaps beyond 5 T formulated** 0

www.advancedconductor.con

The Bi2212 magnet effort was developed using racetrack technology, and is now transitioning to CCT for higher field

Tengming Shen: "Potential to yield a new high-field, likely quench-training free, easy-to-fabricate magnet technology"

90mm bore, and >85% of short-sample limit

- o Significant training (similar to HD-series of the 2000's) o Inroads are being made to reduce training via a strong diagnostics and modeling push o The subscale program promises cost-effective, rapid investigation into training reduction
- •The HTS accelerator magnet technology development is leveraging the stress-managed nature of the **CCT** concept
 - o Steady progress on the REBCO front the next planned magnet should achieve 5T stand-alone o The very promising and productive racetrack development of Bi2212 is now being transferred to
 - **CCT** for future insert testing

that are planned in the updated roadmaps

•The CCT concept has matured significantly – first Nb₃Sn 2-layer magnets have yielded >8.5T in a

•The CCT concept serves as a "limiting case" of stress management; lesson's-learned and modeling and diagnostics tools developed for the CCT program will apply to other stress management concepts

