

U.S. MAGNET DEVELOPMENT PROGRAM

US Magnet Development Program Updated roadmaps - 2019

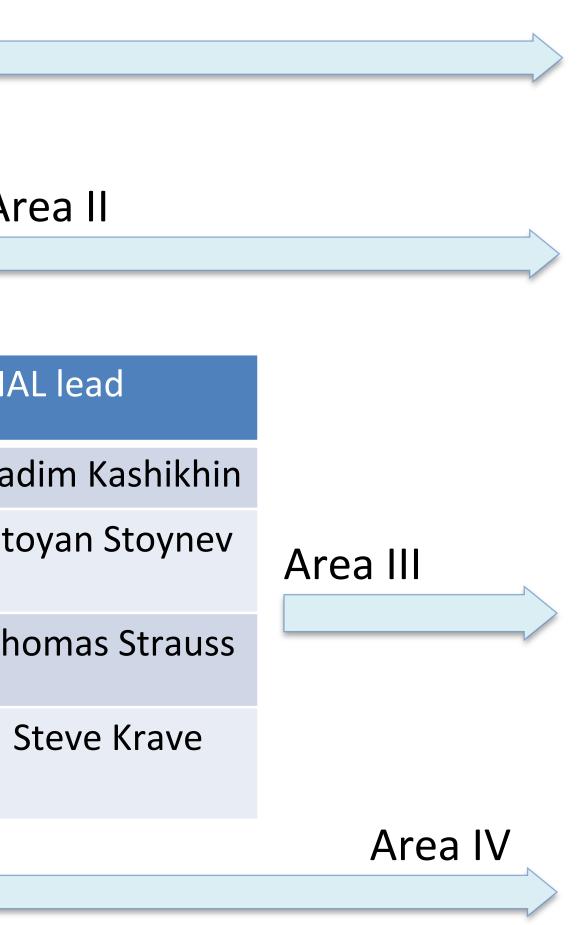
Soren Prestemon US Magnet Development Program Lawrence Berkeley National Laboratory

Outline

- •Short review of overall program to-date
- •Strategic considerations/areas driving the updated roadmaps
- •Key directions and their motivations
- •New roadmaps for key areas and their interconnections
- •Summary

US MDP Updated Roadmaps - 2019

2


The program has been structured to align with the primary goals

Magnets	Lead
Cosine-theta 4-layer	Sasha Zlobin
Canted Cosine theta	Diego Arbelaez
Bi2212 dipoles	Tengming Shen
REBCO dipoles	Xiaorong Wang

Technology area	LBNL lead	FNA
Modeling & Simulation	Diego Arbelaez	Va
Training and diagnostics	Maxim Martchevsky	St
Instrumentation and quench protection	Maxim Martchevsky	Th
Material studies – superconductor and structural materials properties	Ian Pong	
Cond Broc and P&D Lar		

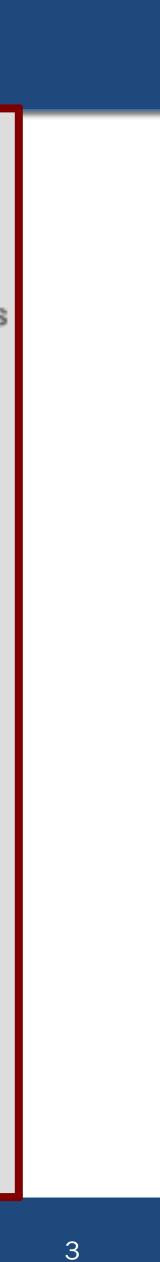
Cond Proc and R&D Lance Cooley

US Magnet Development Program (MDP) Goals:

GOAL 1:

Explore the performance limits of Nb₃Sn accelerator magnets with a focus on minimizing the required operating margin and significantly reducing or eliminating training.

GOAL 2:

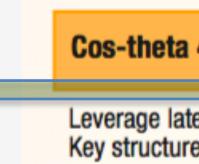

Develop and demonstrate an HTS accelerator magnet with a self-field of 5T or greater compatible with operation in a hybrid LTS/HTS magnet for fields beyond 16 T.

GOAL 3:

Investigate fundamental aspects of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction.

GOAL 4:

Pursue Nb₃Sn and HTS conductor R&D with clear targets to increase performance and reduce the cost of accelerator magnets.

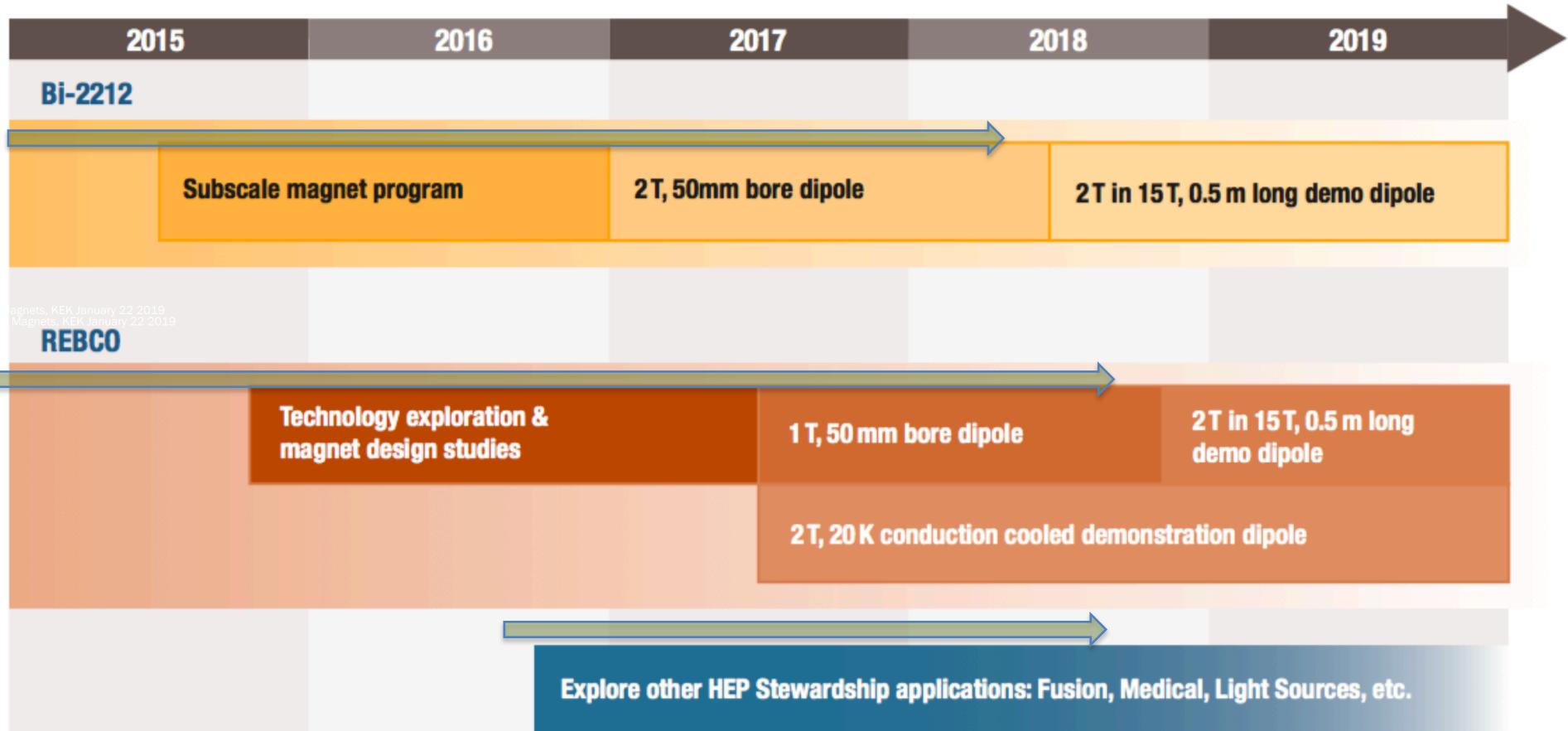


The MDP Nb₃Sn magnet efforts had a two-pronged approach, based on ongoing efforts at the time and limited funding of the program

Area I: Nb₃Sn magnets

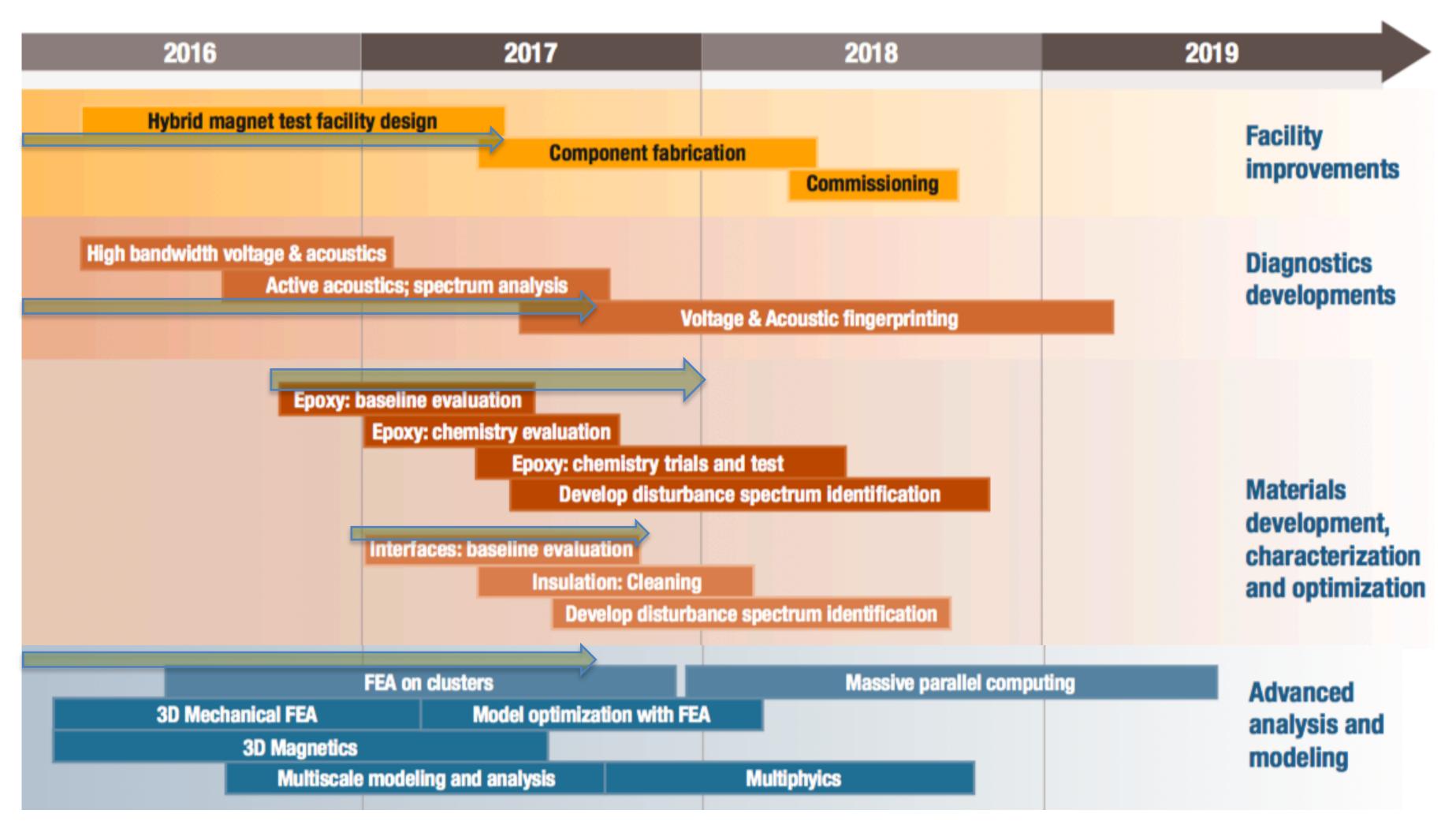
- Our focus has been on:
 - The Cos-t demonstrator
 - **Investigation of the CCT** concept

201	6		2017			2018		2019
Push tradition	al Cos-theta	technology t	o its limit	with newe	st conduc	tor and s	structure	
	Cos-theta	4-layer 15 T		Preload m	ods	15 T with improve		Cos-theta 4-layer 16 T
	Leverage lat Key structur	est Nb₃Sn and B e	ladder and	Impact of pr training	eload on			Optimized 16 T design as baseline
Develop innov	ative concept	to address	technolog	y issues at	high field	d		
CCT – 2-layer	10 T —						\rightarrow	
1st model	Address conductor expansion	Address assembly issues	Test alternative materials	Focus or training	mai Pre	us on rgin pare for S inserts	HTS insert training	
then demon	strate 16 T fie	lds, and furt	hermore u	ise for hyb	rid HTS-L	TS dipole	S	
					CCT – 8-I	ayer 16 T	demonstrat	tion ————————————————————————————————————
			CCT	' – 4-layer 1	3 T model	\rightarrow		CCT – 8-layer 15 T for
			1st n	nodel	Improven reproduci possible of future	ibility; element		HTS insert testing



The MDP HTS magnet development was initiated with efforts in both **REBCO and Bi2212**

Area II: HTS magnet technology


A key science components of the MDP Plan is Technology Development, focused on enhancing our understanding of what drives magnet performance

Area III:

The science of magnets: identifying and addressing the sources of training and magnet performance limitations via advanced diagnostics, materials development, and modeling

Focus has been on

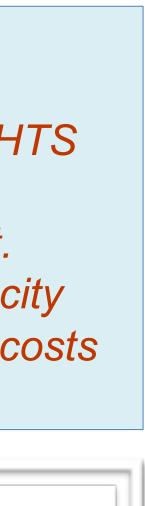
- advanced modeling with user-defined Ansys finite elements
- Passive and active acoustic diagnostics
- **Investigation and testing** of alternative epoxies

Conductor development has been pursued through leveraged investments and coordination of industrial efforts

Area IV: Conductor Development

- Nb₃Sn advances continue to be pushed
- Very significant potential of APC and Hf-doped material is materializing can it become commercially viable?
- Advances in Bi2212 powder processing + overpressure processing
 - **Dramatic improvement in wire Jc now surpasses** Nb₃Sn above 11T
- **REBCO** development focused on leveraging SBIR and complementary programs;
- **MDP** provides measurements and conductor $\sqrt{0}$ performance feedback to developers and vendors
- **V**O Focus is on CORC cables route to competitive wire Jc has been identified and steady progress made

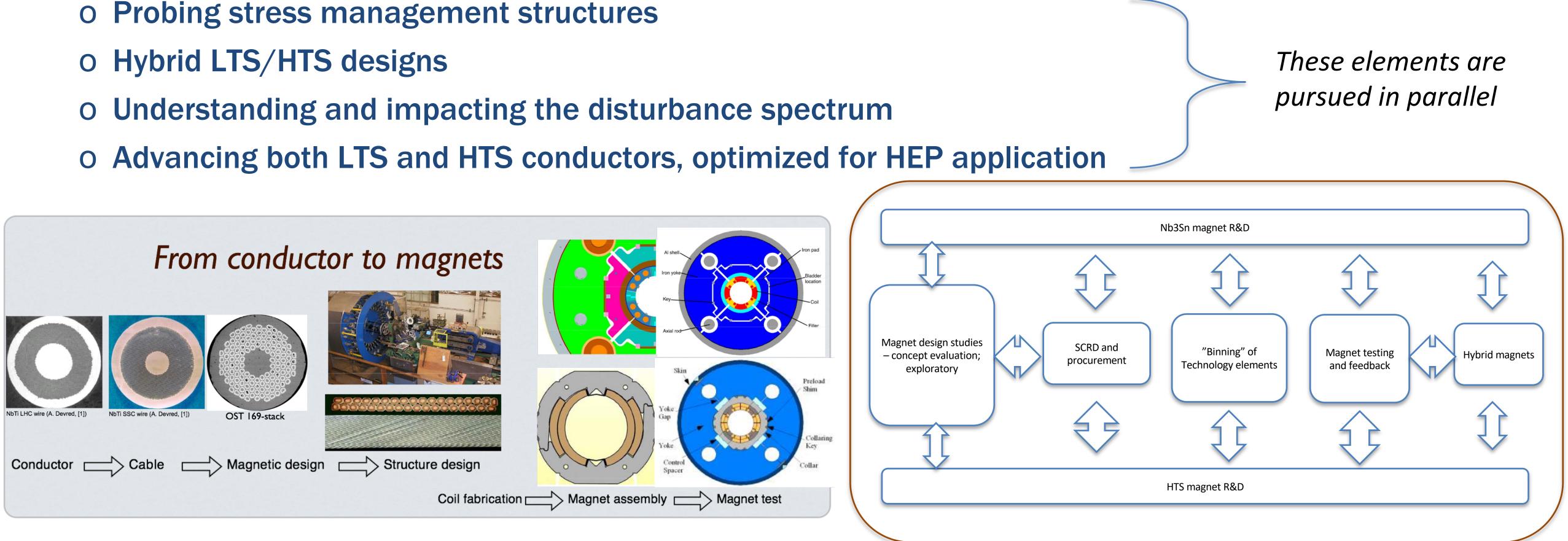
- Determining the performance limits of Nb₃Sn and HTS conductors.
- Understanding uniformity and reliability, especially of HTS
- conductors.
- Understanding of future conductor scalability and cost.
- Evaluating factors critical for eventual worldwide capacity ramp-up for future projects so as to minimize start-up costs and allow more competition.



Lance Cooley, Ph.D. Head, Conductor Procurement and R&D Program US HEP Magnet Development Program Applied Superconductivity Center, National High Magnetic Field Laboratory 2031 E. Paul Dirac Dr, Tallahassee, FL 32310-3711 USA ldcooley@asc.magnet.fsu.edu

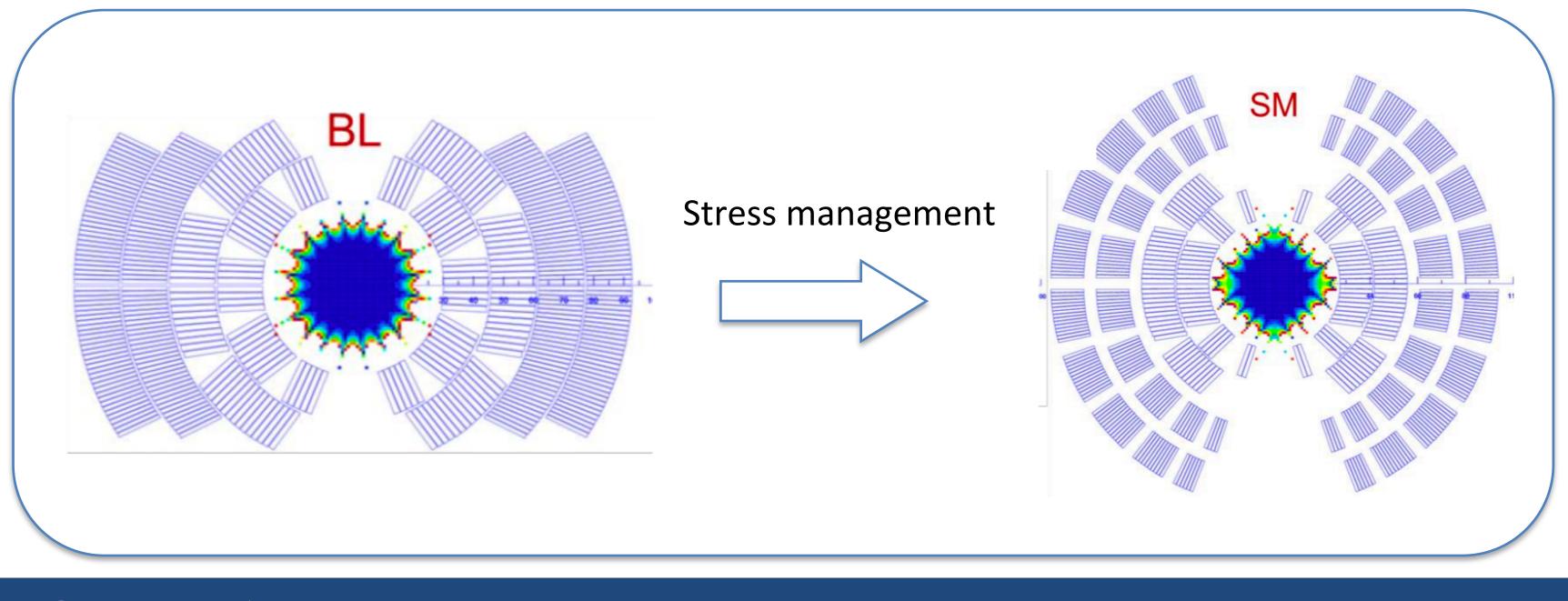
> Roadmap for Conductor Procurement, Research and Development October 6, 2017

> > Covering DOE FY 2018

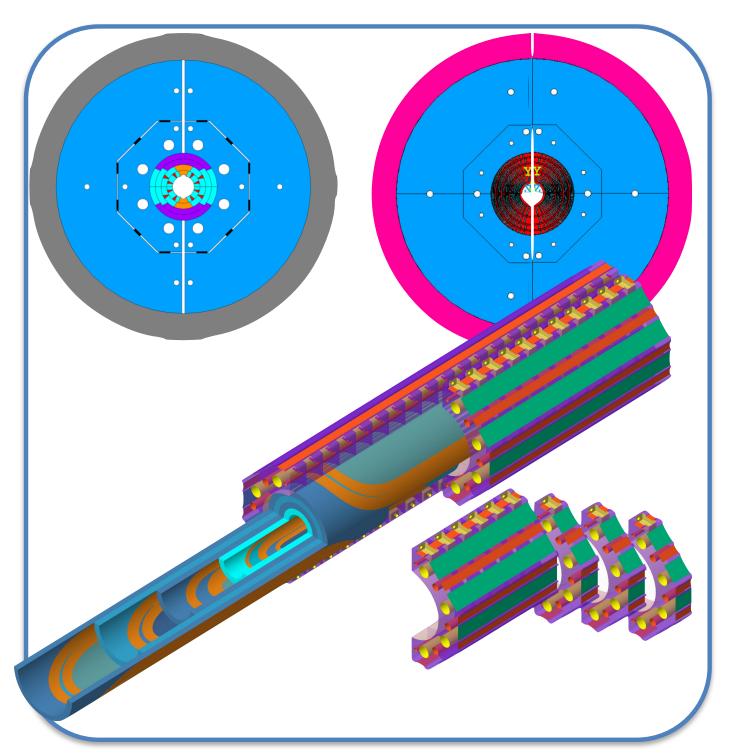


•Based on progress to-date and the perspective of MDP scientists and engineers, the program roadmaps will focus on the following strategic directions:

Strategic considerations/areas driving the updated roadmaps



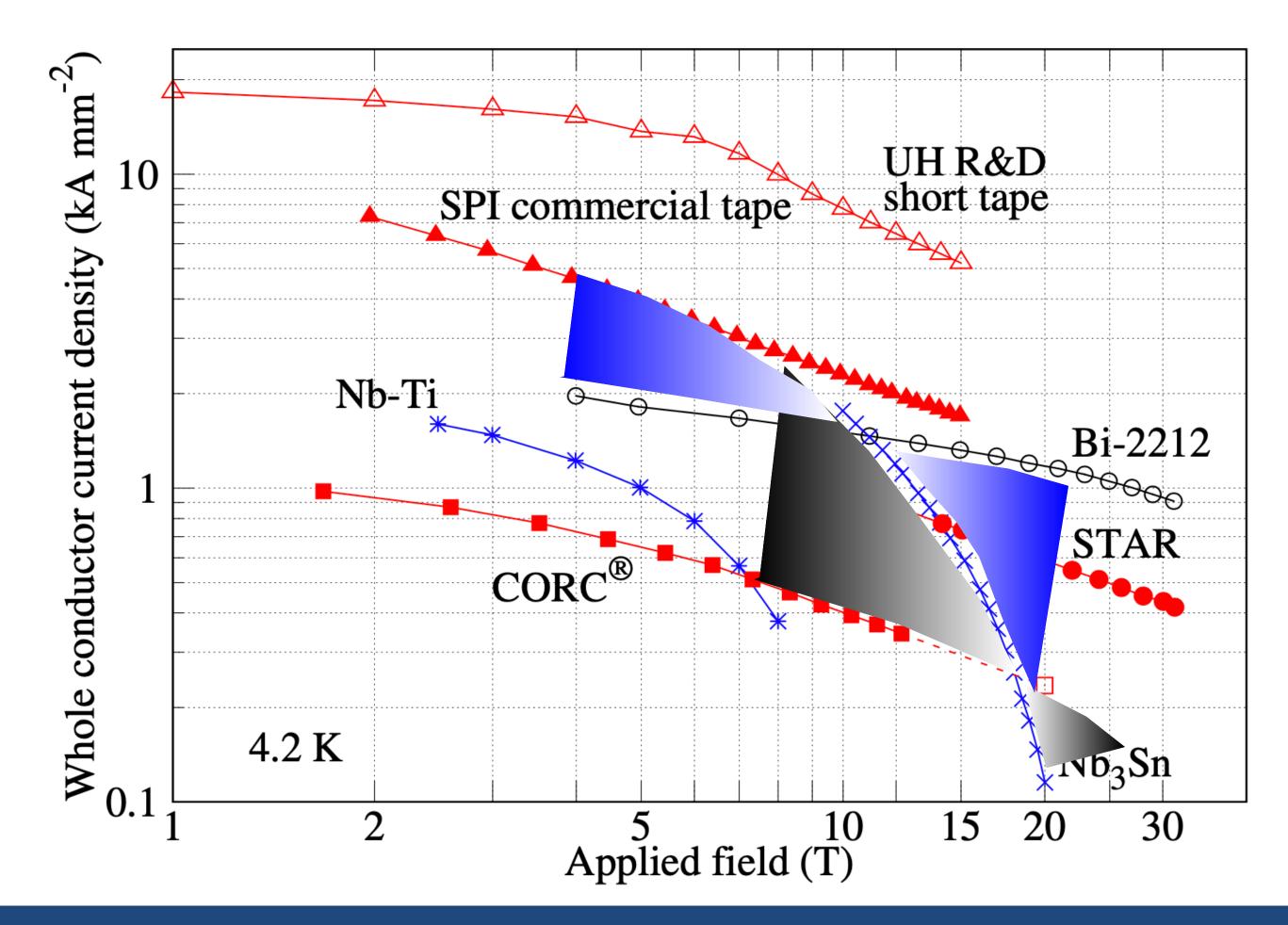
•Stress-management structures


- o Combination of high-field and strain-sensitive materials motivates structures that "control" strain • Nb₃Sn, REBCO, and Bi2212 are all strain-sensitive and susceptible to degradation 0
- Q: can we avoid shifting the problem to interfaces, or engineer the interfaces to mitigate disturbances?

Strategic direction 1: Addressing strain-sensitivity of high-performance superconductors through stress managed structure concepts

Example: SMCT concept and a "utility structure" design

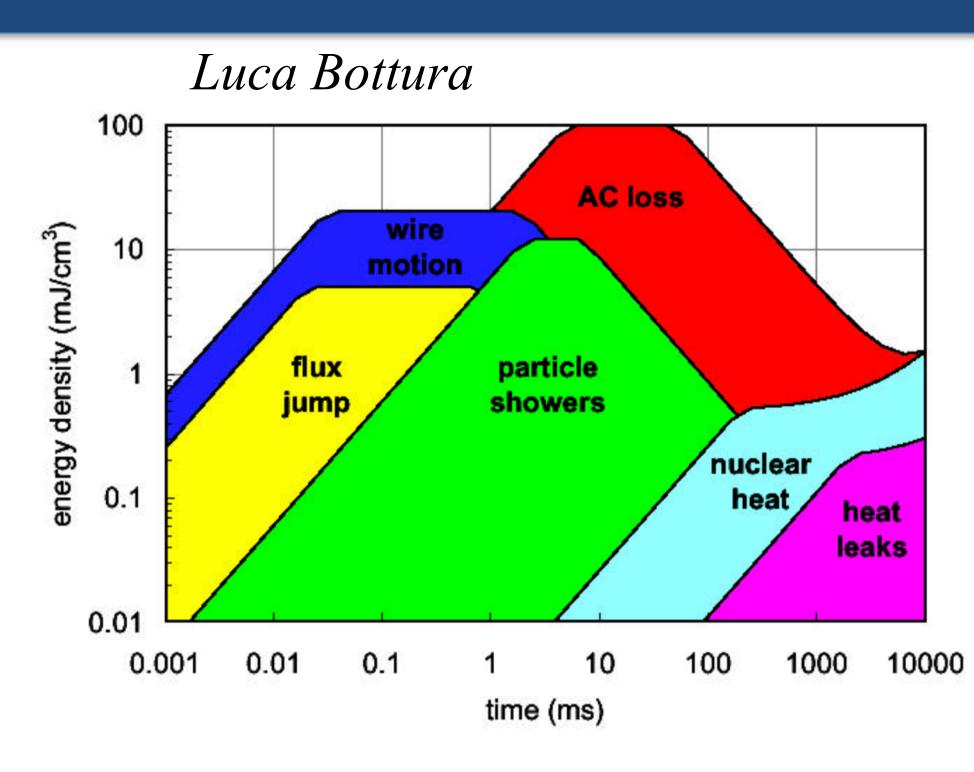
accelerator magnets


•Hybrid LTS/HTS designs

- o Current conductor costs make hybrid designs necessary
- **o** Requires integrated designs, fabrication techniques, testing infrastructure
- Q: do hybrid designs inherit the "best" or "worst" c LTS and HTS materials?

We are also evaluating all-HTS magnet designs, should HTS conductor cost reduce substantially and the potential for training-free behavior of HTS magnets hold up at high field

Strategic direction 2: Investigate the potential for hybrid LTS/HTS

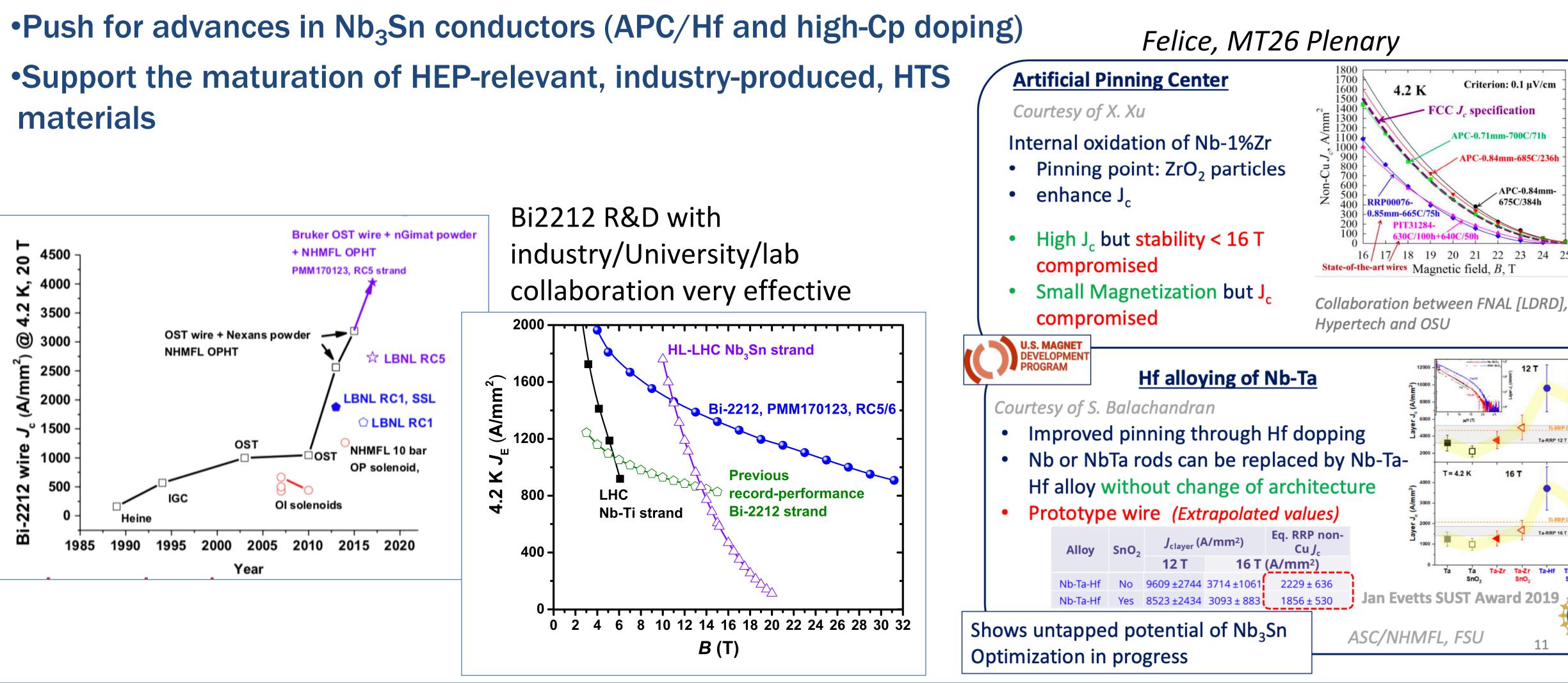

influence, the disturbance spectrum

Understanding and impacting the disturbance spectrum

- o Improvements in diagnostics (many first pursued decades ago) are providing dramatic insight into the disturbance spectrum
- o Advances in magnet materials (e.g. epoxies) and conductors (e.g. high Cp-doping) promise some ability to impact the spectrum and conductor response
- o Q: can we engineer control of the disturbance spectrum and magnet response to reduce operating margin and enhance reliable performance?

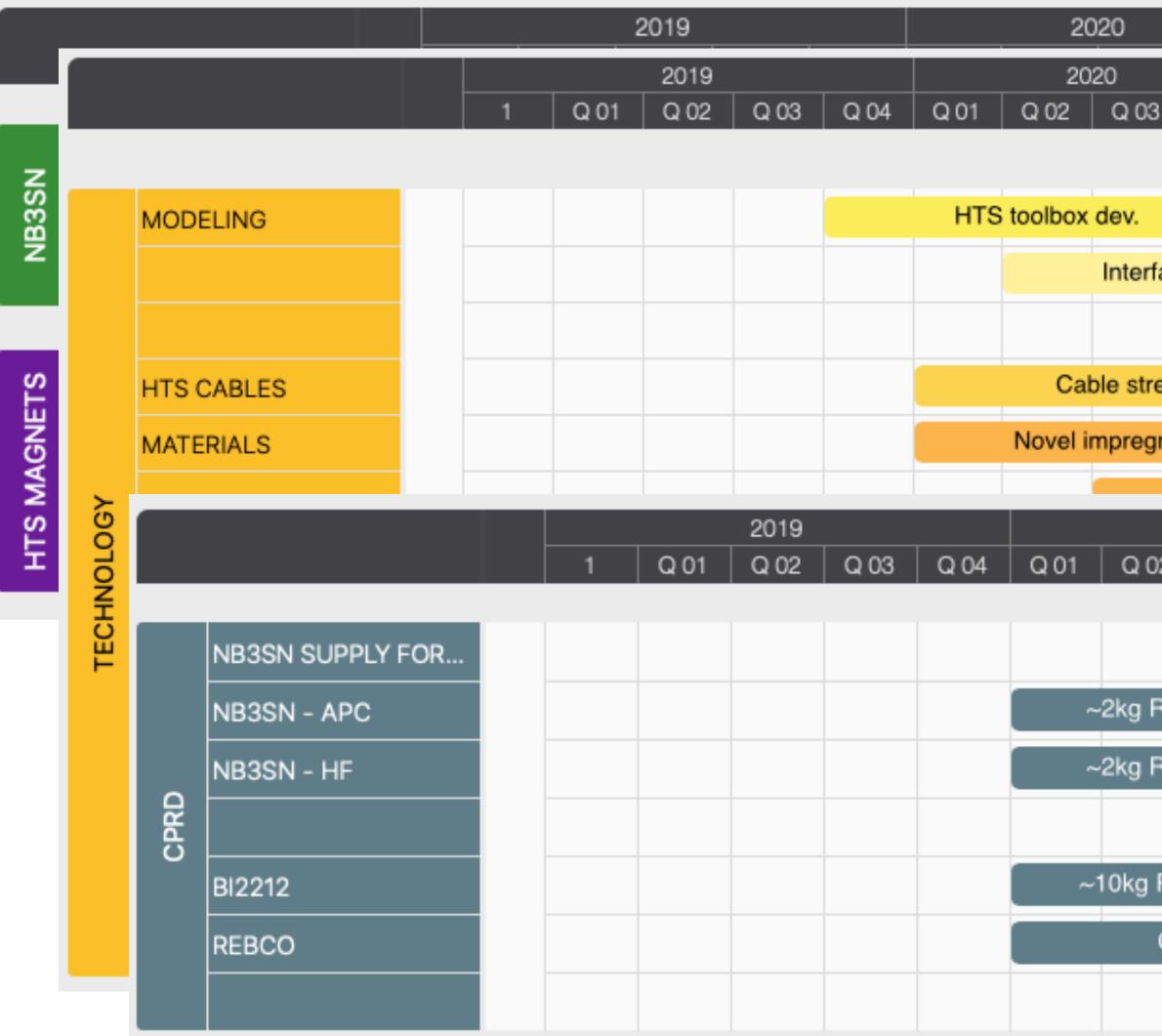
Strategic direction 3: Quantify, and identify mechanisms to

Diagnostics requirements:


- Large bandwidth to address temporal regimes
- Sufficient sensitivity to discern energy deposition regimes
- Redundancy with independent physics to tighten σ

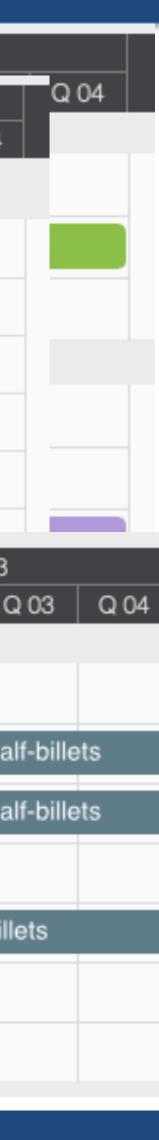
materials

Strategic direction 4: Pursue advances in both LTS and HTS conductors, where opportunities for significant breakthroughs are most likely



24 25

Top-down program – a management perspective



				2021				2022				20	23
			20	21			20	22			20	23	
3	Q 04	4 Q 01 Q 02 Q 03 Q 04					Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04

				~		
	Deals antis	inction for monor	1.			
gnation techniques						
ress limitations		Cable optin	nization/	feedback		
	Leverag	ge high-performa	nce com	puting		
rfaces - techniques	St	ress-managed de	esign opt	t		
	Hybrid magnet pr	rotection				

20	20			20	21			20	22			20	23
02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	0

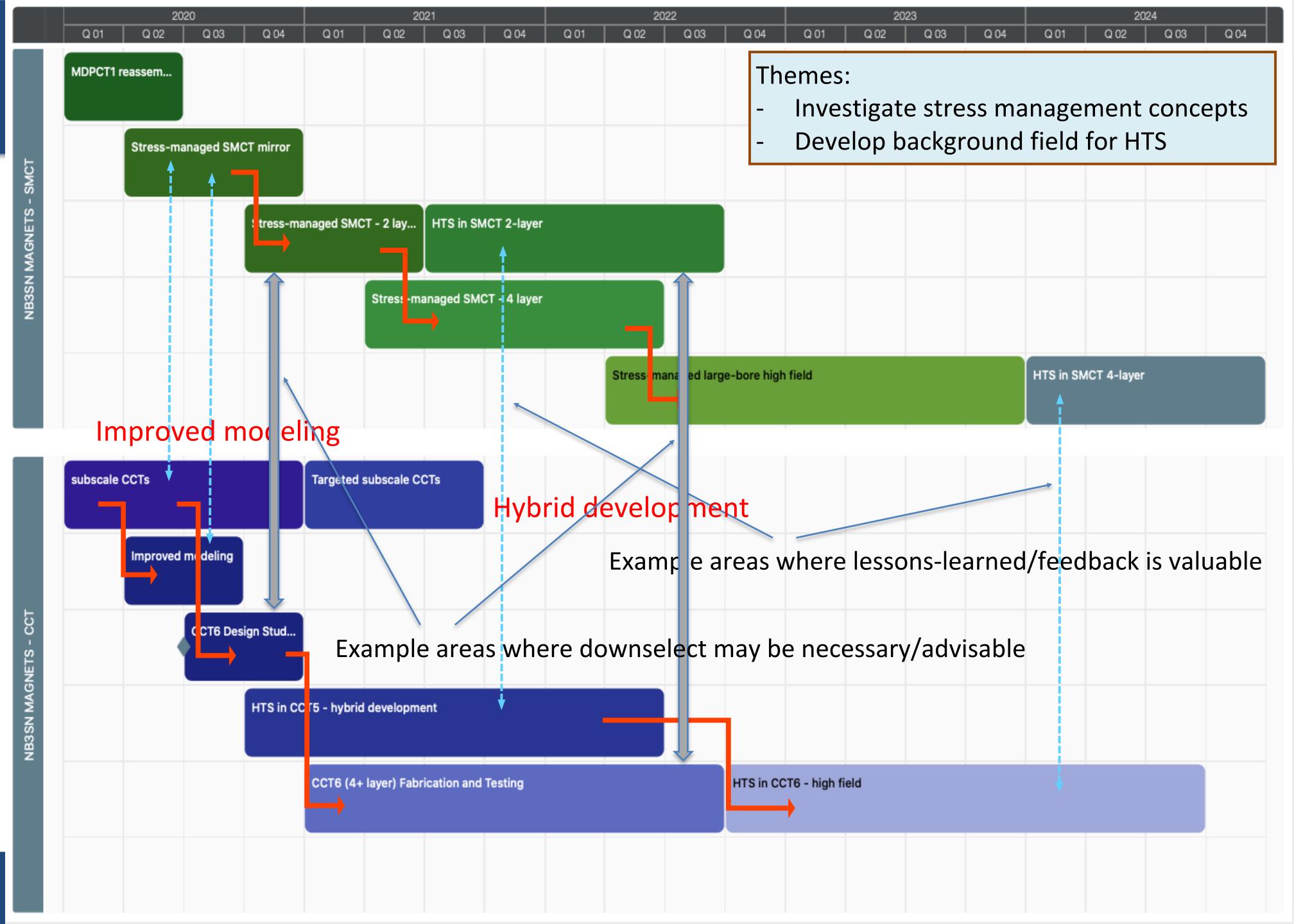
		Procur	rement							Procur	rement		
R&[) restack	s	2-10kg	alloy&he	eat-treat	studies		Half-I	billets		Op	otimized I	na
R&[) restack	s	2-10kg	alloy&he	eat-treat	studies		Half-I	oillets		Ot	otimized I	na
					Explore	intro of	high Cp						
, R&I	D restac	ks		20Kg	billets			20Kg	billets			20Kg t	bill
со	RC			со	RC			со	RC				
		STAR s	amples				STAR s	amples					

Detailed roadmaps have been developed in a bottoms-up manner, with lead researchers coordinating input

US MDP Updated Roadmaps - 2019

14

Updated Roadmaps: *Nb₃Sn Magnets*

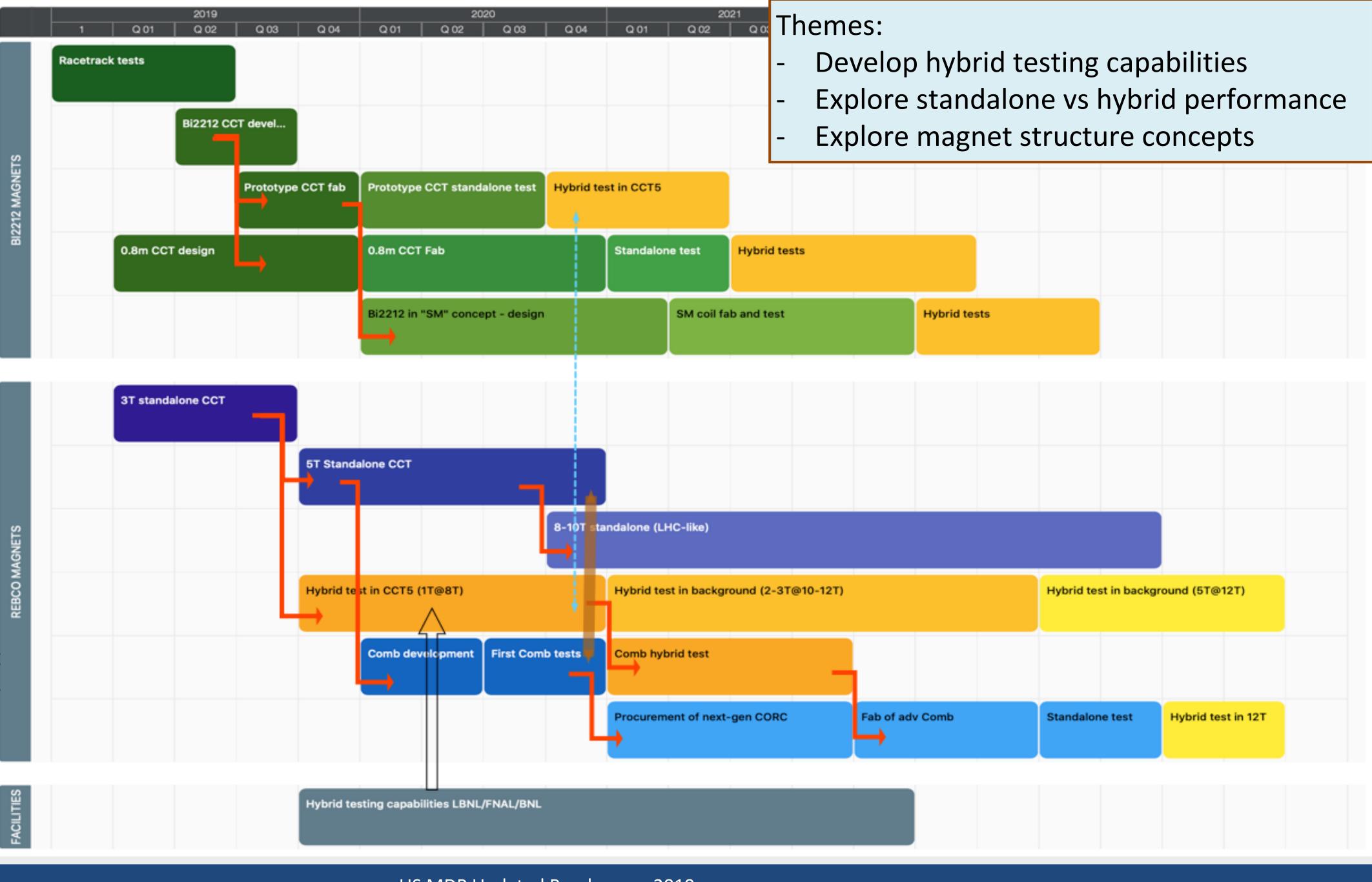

- 1. "Stress-managed" costheta (SMCT)
- 2. Continued CCT development

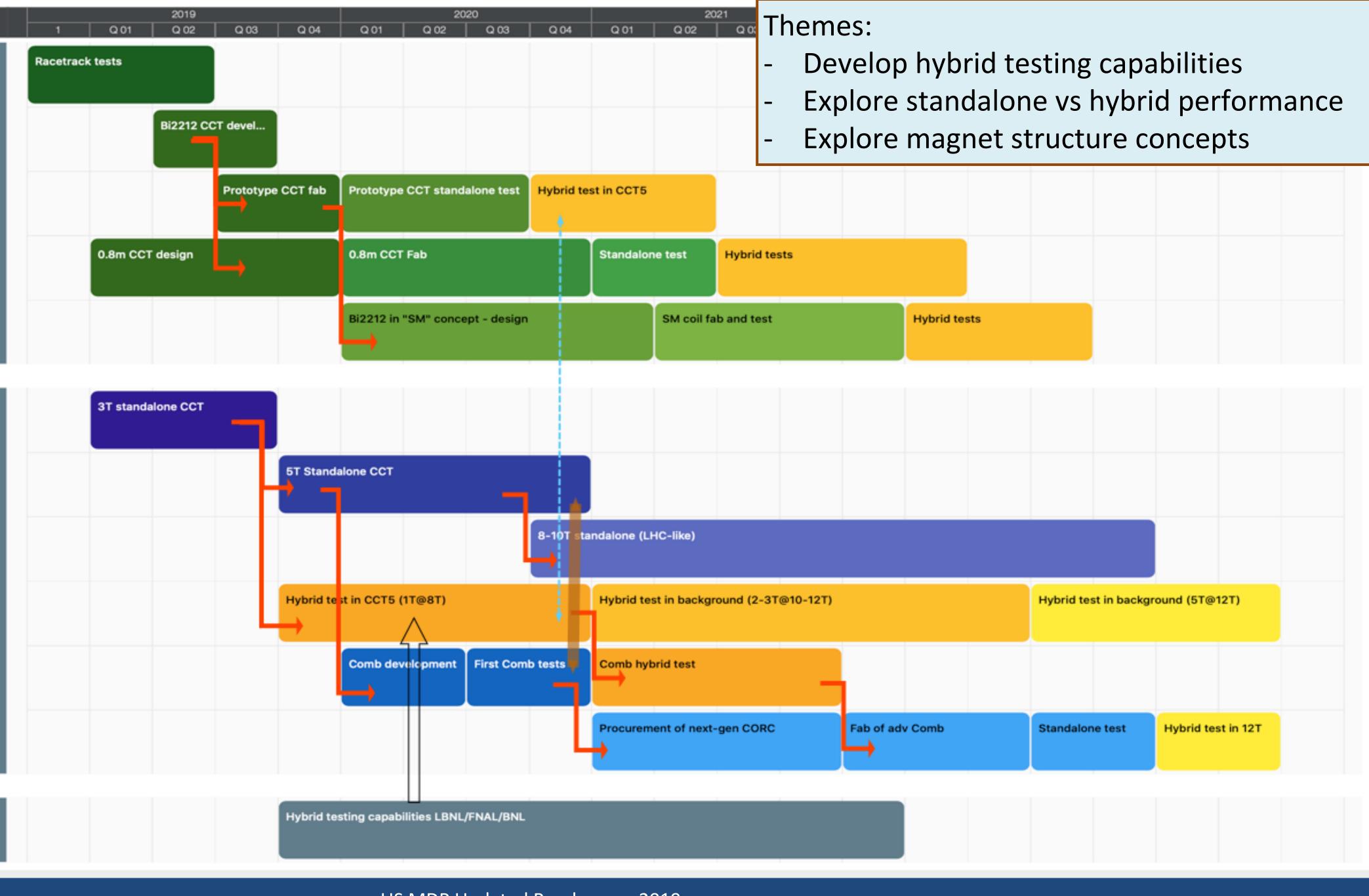
Leverage opportunities for sharing lessons-learned

Multiple scenarios for HTS insert testing – provides robustness

Potential for "downselect" of technology for more costly large magnets

U.S. DEPARTMENT OF ENERGY Office of Science


Updated Roadmaps: HTS Magnets


Continue to pursue **REBCO and Bi2212** technology

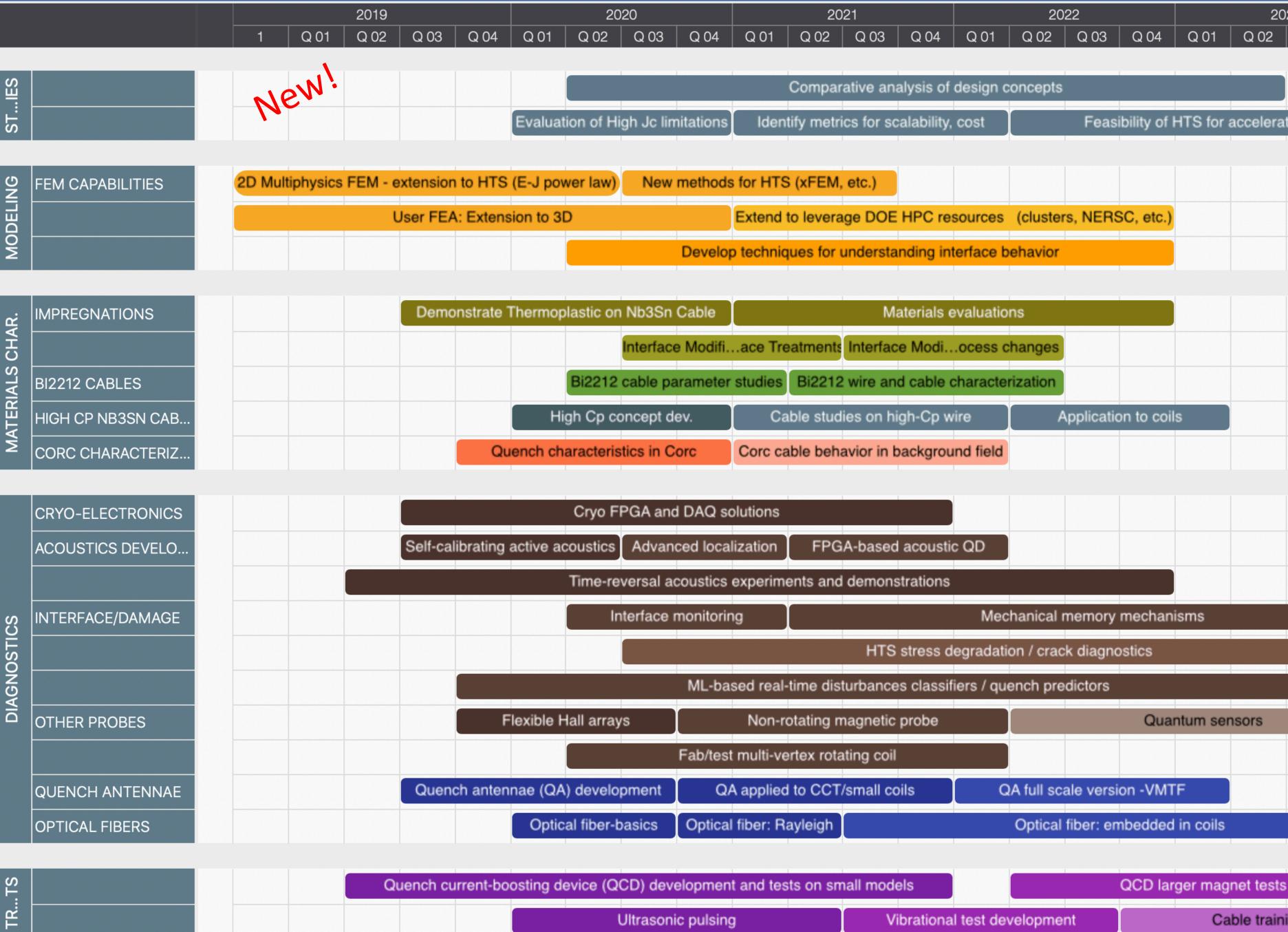
Growing multi-lab interest; addition of BNL adds experience

Hybrid testing dominates landscape; multiple scenarios for HTS insert testing provides robustness

U.S. DEPARTMENT OF ENERGY Office of Science

Updated Roadmaps: Technology

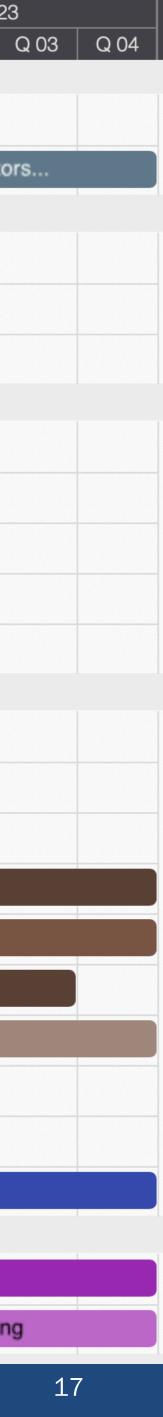
Leverage advanced computing: FEM, systems modeling, and machine learning


Invest in magnet materials, e.g. impregs.

Rapidly advance independent diagnostic capabilities

Investigate potential for training rate enhancement

Study future directions: alternative cost-effective concepts



		20	20			20	21			20	22			202	23
Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	
						Compar	ative an	alysis of	design c	oncepts					
	Evaluati	ion of Hi	gh Jc lin	nitations	lden	tify metri	cs for so	alability,	cost		Feas	ibility of I	HTS for	accelerat	0
to HTS	(E-J pow	ver law)	New	methods	for HTS	S (xFEM,	etc.)								
: Extens	ion to 3E)			Extend	to levera	ge DOE	HPC re	sources	(cluster	s, NER	SC, etc.)			
				Develop	o technic	ues for u	understa	nding in	terface b	ehavior					
nstrate 1	Thermop	lastic on	Nb3Sn	Cable			M	aterials e	evaluation	ns					
			Interface	e Modifi.	ace Tre	eatments	Interfac	e Modi	.ocess c	hanges					
		Bi2212	cable pa	arameter	studies	Bi2212	wire an	d cable o	character	rization					
	Hig	gh Cp co	oncept d	ev.	Ca	able stud	ies on hi	igh-Cp w	vire	A	pplicatio	on to coil	s		
Qu	ench cha	aracteris	tics in C	orc	Corc ca	able beha	avior in t	backgrou	ind field					- 	
		Cryo F	PGA and	d DAQ so	olutions										
ibrating	active ac	oustics	Advan	ced loca	lization	FPG	A-based	acousti	c QD						
		Time-re	versal a	coustics	experim	ents and	demons	strations							
		In	iterface i	monitorir	ıg				Mec	hanical I	memory	mechan	isms		
							HTS	stress d	egradatio	on / crac	k diagno	ostics			
															-

US MUP Opualeu Noaumaps - 2015

•Magnets are drivers for the program o ... but can at best be only as good as the conductors that go into them, motivating continued conductor R&D

•Our focus / driving consideration is stress-management

- The program must deliver on the question: "Can stress-managed structures really work?" • Q: How do we define "success" for a given structure?
- - Q: What technical insights are most effective at addressing limitations?
 - Q: What specific experiments are most useful to feed magnet design/fab/test?
- o Design studies can predict, and model magnet R&D has to confirm,
 - To what degree SM structures deviate from "traditional" Cos-t, block, common coil,...
 - How structures (in particular SM) are impacted by / leverage advanced Nb₃Sn
- What additional limitations are encountered by advanced Nb₃Sn (protection, stability,...) o <u>Try</u> to quantify scalability & cost drivers for various structures

- •We are still just developing basic HTS magnet technology... o But the path to high field is fairly clear
- •We should identify key questions along the way and how we intend to answer them o Q: Do we need to worry about HTS magnet training and degradation? o Q: Do HTS magnets need traditional protection, e.g. extraction, heaters, etc.? o Q: Is hybrid operation effective, or do we inherit problems from both HTS and LTS?
- •We plan significant hybrid tests
 - o Pursuing a multi-pronged approach:
 - BNL has some hybrid testing capability; near term focus for MDP is on Corc cable tests
 - LBNL is developing hybrid testing capability; near term plan is to use CCT5
 - FNAL is developing hybrid testing capability as part of HTS cable test facility
 - What questions will these tests answer? Is there a priority (in time? Cost?)

Some thoughts on our roadmaps so far – HTS magnets

- Lots of ideas and concepts to explore
 - o Need to keep focus on questions that drive magnet performance
 - o Need to strongly leverage "outside" sources if they can benefit from a technology development, lets strive for "skin in the game"
 - o Lets not reinvent the wheel
 - Always reach out to "current" experts, give them credit, and get us up to speed as quickly as possible
 - Then collaborate with the "current" experts to move things along faster -Our reputation should be one of an *"excellent collaborator"*
- •We need to identify the platforms being used for various studies o Ex: what is the right test bed for the "QCD" experiments? o Are the machine learning databases "generic", or magnet-specific? How will we be able to tell?



- •Push for advances in Nb₃Sn conductors (APC/Hf and high-Cp doping), and magnet designs that can leverage the enhanced performance
- •Support the maturation of HEP-relevant, industry-produced, HTS materials
- •Continue to advance HTS magnet technology, with a focus on hybrid magnet designs that explore and test HTS accelerator magnet designs at high field
- •Advance technology areas on multiple fronts:
 - o Modeling of interfaces to guide design and materials optimization
 - o Modeling of hybrid systems to support safe series and parallel hybrid magnet testing scenarios
 - o Develop a suite of impregnation materials and techniques tailored to magnet needs, in particular to reduce intrinsic strain from diff. thermal contraction, and to reduce energy dep. during operation
 - o Continue to advance a "toolbox" of diagnostics that provide insight into magnet performance, in particular the disturbance spectrum, with focus on providing feedback to magnet design
 - Using diagnostic data, leverage machine learning algorithms to identify hidden interconnections and prognosis capabilities
 - o Initiate a design studies effort that focuses on identifying and prioritizing additional design concepts that should be explored if resources were made available

Backup slides

US MDP Updated Roadmaps - 2019

22

team members

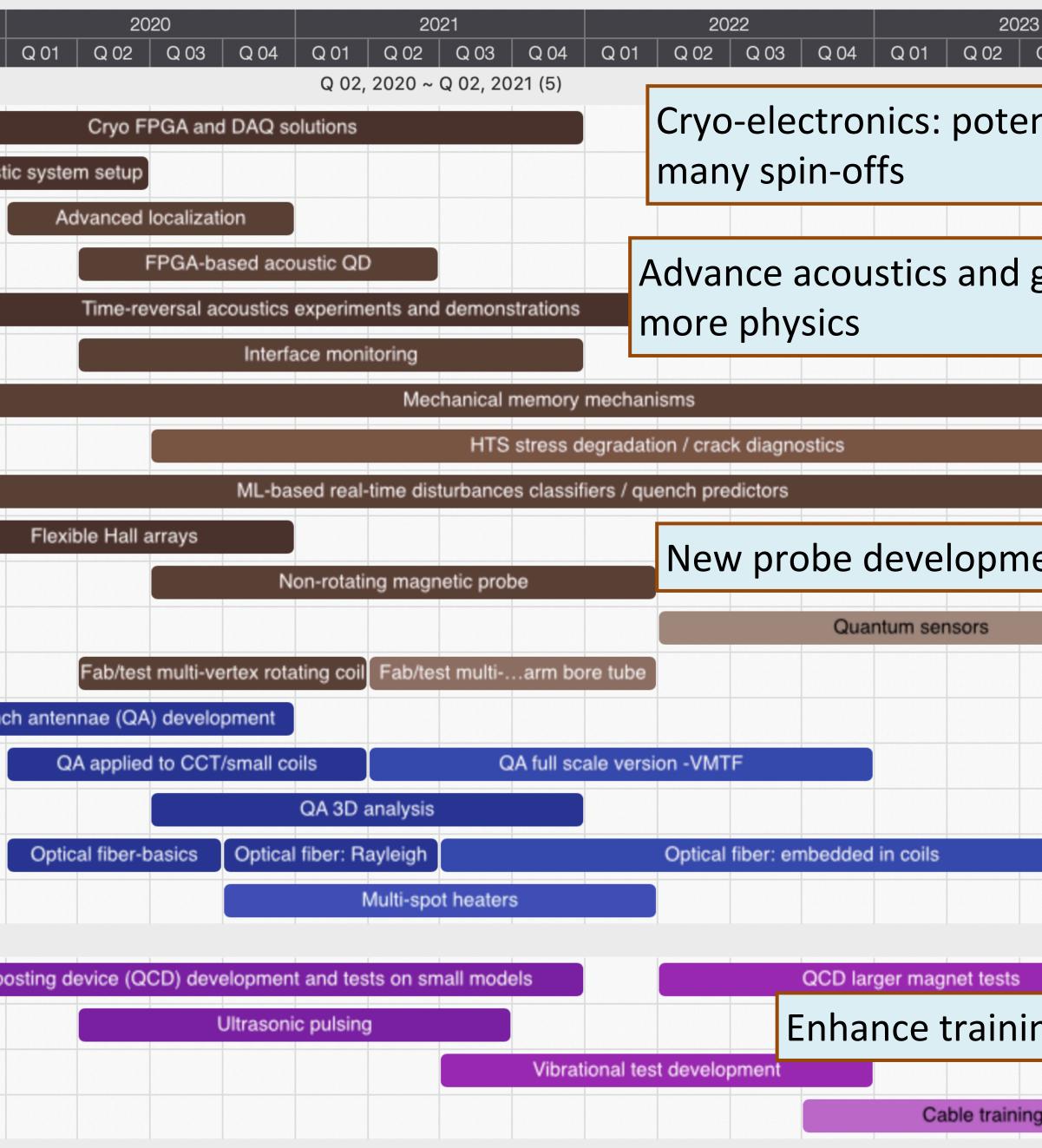
- •A series of six group meetings were devoted to discussions on roadmaps
- •Coordinators were identified for each of the key areas, and tasked with communicating with interested parties to generate draft roadmaps
- In the Technology arena, a plethora of ideas were submitted and discussed
- •A major requirement of any roadmap element is that it have a well-articulated connection to one or more of the MDP goals;
 - o A suggested approach was to identify questions associated with the goals that the roadmap element will answer

Roadmaps were updated with input and discussion from all

Technology areas support the magnet developments

			201	19		20	020			20				202				2023	
_		1	Q01 Q0)2 Q 03	Q 04 Q 0	01 Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04 (Q 01 Q	02 Q 03	Q 04
						_				0		hude of	d						
ES										Compar	ative ana	lysis of	design c	oncepts					
STUDIES					Eva	luation of H	igh Jc lim	itations	Ident	tify metri	cs for sca	alability,	cost		Feasibi	lity of HT	S for acce	elerators	
S I																			
_												Mod	leling	focus:					
	FEM CAPABILITIES	2D Mult	iphysics FEN	I - extension	to HTS (E-J	power law)									hnique	s for H	ITS		
				Exploratio	n of new me	thods for H	TS simula	tion (xFE	EM, etc.))								mputing	5
ВG					: Extension t			_											
DELING				USEI FEA	. Extension (0.30			_										
D N									Extend t	o levera	ge DOE	HPC res	sources	(cluster	s, NERSC	, etc.)			
	INTERFACE MODELING						Dev	elop tecł	nniques	for unde	rstanding	g interfa	ce beha	vior					
	CONDUCTOR MODE						N	b3Sn coi	nductor	modelin	g								
_																			
	IMPREGNATIONS			Demor	nstrate Therr	moplastic or	n Nb3Sn (Cable			Ма	terials e	valuatio	ns					
z					Dem	nonstrate C.	resin on	Nb3Sn											• • •
TION							Interface	Modifi	ace Tre	atments	Interface	e Modi	ocess o	hanges	Imp	oreg. I	echniq	ues and	Interfac
TERIZA																			
CTER					Technology.	ation & tes	Technolo	gyatio	n & tesi	Technolo	ogyatio	on & tes	Technolo	ogyatio	n & tes				
RAC	BI2212 CABLES	0:2212	abla ant	imization			Bi2212 c	able par	rameter	studies									
CHA			cable opt	Imization	i and			Bi2212	wire and	d cable c	haracter	ization				Lligh		aluation	
ST	HIGH CP NB3SN CAB	limitatio	DUZ				High	Cp test	capabili	ties		Cable	studies c	on high-C	p wire	пığı	i cp ev	aluation	
ERIA						ligh Co tao	e optimiza	tion	MQE st	udian	d cable	Α	pplicatio	on to coils					
AATE																			
	CORC CHARACTERIZ											edica	ted in	-field (Corc				
5					US WIDP U	466 6	able bena	vior in ba	ackgrou	nd field	e	xperir	nents						
MATER	CORC CHARACTERIZ					High Cp tap Quench ch Core c		ics in Co	orc	nd field	D	edica	ted in						

			,,	2019				2020	0			20	21			20)22			20	23	
		1	Q 01	Q 02	Q 03	Q 04	Q 01 (Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04
ES												Compar	ative ana	alysis of	design o	concepts						
STUDIES							Evaluatior	n of Higl	h Jc lim	itations	lden	tify metri	cs for sc	alability,	cost		Feas	ibility of I	HTS for	accelera	tors	
ST																						
_														Moc	leling	focus						
	FEM CAPABILITIES	2D Mul	tiphysics	FEM - e	xtension t	O HTS (E-J powe	r law)							•			les for	• нтѕ			
							methods		cimula	tion (vE	EM ato	,				_	-			e comp	uting	
ŋ									Sinua			,				8	11101 P					
DELING				U	lser FEA:	Extensi	on to 3D		_													
QD											Extend	to levera	ge DOE	HPC re	sources	(cluste	rs, NER	SC, etc.)				
2	INTERFACE MODELING								Dev	elop tec	hniques	for unde	erstandin	g interfa	ice beha	vior						
	CONDUCTOR MODE								N	b3Sn co	nductor	modelin	a									
	IMPREGNATIONS				Demon	strate T	hermoplas	stic on N	vb3Sn (Cable			Ma	aterials e	evaluatio	ons						
NO							Demonstra											npreg.	Tech	niques	and i	nterface
ZAT								In	nterface	Modifi.	.ace Tre	atments	Interfac	e Modi	.ocess o	changes						
TERI					Т	echnolo	gyation	& tes Te	echnolo	gyatio	on & test	Technolo	ogyatio	on & tes	Technol	ogyati	ion & tes					
ACT	BI2212 CABLES							- 6	Bi2212 d	able pa	rameter	studies										
HAR		Bi2212	cable d	optimi	ization	and				Bi2212	wire an	d cable o	character	rization								
s Cl		limitatio	ons						1.1						a ha a dh' a a a		.	Hi	gh Cp	evalua	ation	
SIALS	HIGH CP NB3SN CAB										capabil			Cable	studies (on high-(Cp wire					
АТЕР							High C	p tape c	optimiza	ition	MQE s	tudian	d cable	ļ A	Applicatio	on to coi	ls					
Ŵ	CORC CHARACTERIZ						Quer	nch char	racterist	ics in C	orc)edica	ted in	-field	Corc					
						US MD	P Upda	ed Kab	adma	os - 20 vior in d	ackgrou	nd field			ments							24
																						24


			,,	2019				202	20			20	21			2	022			20	23	
		1	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04
-																						
ES												Compar	ative ana	alysis of	design o	concepts	\$					
STUDIES							Evaluatio	on of Hig	ih Jc lin	itations	lden	tify metri	cs for sc	alability,	cost		Feas	ibility of	HTS for	accelera	tors	
ST																						
_														Mod	deling	focus	•					
	FEM CAPABILITIES	2D Mul	tiphysics	FEM - ex	xtension t	to HTS	E-J powe	er law)							•			les for	• нтѕ			
					xploration				9 eimul	ation (vE	EM ato					-	-			e comp	uting	
Q									o siniui	ation (xr	EIVI, etc.	,				28118	111811 P	CITOIT	nanec	. comp	, a thing	
DELING				U	lser FEA:	Extensi	ion to 3D															
OD											Extend	o levera	ge DOE	HPC re	sources	(cluste	rs, NER	SC, etc.)				
2	INTERFACE MODELING								Dev	elop teo	hniques	for unde	erstandin	g interfa	ice beha	vior						
	CONDUCTOR MODE							-	Ν	b3Sn co	onductor	modelin	a						·			
	CONDUCTOR MODE												9									
	IMPREGNATIONS				Demon	istrate T	hermopla'	stic on	Nb3Sn	Cable			Ma	aterials (evaluatio	ns						
	INFREGNATIONS				Dennen									atomaio								
NO							Demonstr	rate C	resin or	n Nb3Sr							In	npreg.	Tech	niques	and i	nterface
ZAT									nterface	Modifi.	ace Tre	atments	Interfac	e Modi.	.ocess o	changes						
ERIZ					T	echnolo	gyatior	n & tes I	Technolo	ogyati	on & test	Technolo	ogyatio	on & tes	Technol	ogyat	ion & tes					
ACI	BI2212 CABLES							_ 1	Bi2212	cable pa	rameter	studies										
HAR		Bi2212	cable c	optimi	ization	and		H		Bi2212	wire an	t cable o	character	rization								
s		limitatio	ons										maracter	_				Hi	gh Cp	evalua	ation	
IALS	HIGH CP NB3SN CAB								High	n Cp tes	t capabil	ties		Cable	studies (on high-	Cp wire					
TER							High (Cp tape	optimiz	ation	MQE s	udian	d cable	ļ	Applicatio	on to coi	ils					
MA	CORC CHARACTERIZ						Que	nch cha	racteris	tics in C	orc)edica	ted in	field	Corc					
						US MI	P Upda	ted Re	padma		ackgrou	nd field			ments		COIC					
														лрспі	nento							24

				2019	1		
		1	Q 01	Q 02	Q 03	Q 04	C
	CRYO-ELECTRONICS						
	ACOUSTICS DEVELO			Self-cal	ibrating	actiust	tic s
	INTERFACE/DAMAGE						
Ñ							
STICS							
DIAGNO	OTHER PROBES						
DIA							
	QUENCH ANTENNAE					Quene	ch a
	OPTICAL FIBERS						
(0)							
MENTS				Qı	uench cu	irrent-bo	osti
.RIM							
TRAINIRII							
TR							

Q 03	Q 04	
ntia	l for	
garr	ner	
ents	5	
ng r	ate	
9		
2	5	