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 A DSP based digital LLRF developed around 2003 at CERN using a 
BNL developed motherboard and CERN developed daughter cards 
and other modules has been successfully used to operate LEIR at 
CERN since 2005 [1,2,3,4]  

 A Leading-edge hardware family1 for LLRF and diagnostics2 
applications in CERNs synchrotrons has now been developed to 
succeed this previous (prototype) generation.  
 Similar from a conceptual viewpoint 
 Entirely redesigned using recent components 
 Adheres to recent industry standards [5,7] 
 Extensive use of novel technologies 
 Application of novel on-chip communication architecture [9] 
 Computer to firmware interfaces now defined by a common database [10] 
 Fully remote reconfigurable 

 
 

1 See poster ID#45 LLRF 2013 «A Leading-edge…» 
2 See poster ID#46 LLRF2013 «LLRF & Longitudinal Diagnostics Implementation for CERN’s ELENA Ring» 
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Digital LLRF  
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The original DSP based Beam Control system [1, 2, 3, 4] 
Successfully operational in LEIR since 2005 

Weak points: 
 Inter DSP communication through panel mounted link-ports 
 DSP memory and VME share the same bus (conflicts operation) 
 Moderate DSP “Fast loop” cycle time 15 μs (DSP Clock 80 MHz + Assembly programming). 
 RF Clock and TAG distribution through external distribution 
 The electronics has become obsolete (DSP FPGAs ~2003) 
 Non standard mezzanine solution with (too) limited on-board FPGA resources 
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New RF Low Level system 
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Characteristics: 
 Full PPM operation including cycle parameter archiving 
 Unlimited inter DSP communication through Standard VXS [5] backplane 
 All players DSP etc. have independent control interfaces 
 DSP “Fast loop” cycle time 5 μs (DSP Clock 400 MHz + C programming). 
 RF Clock and TAG distribution through VXS fabric 
 Recent electronics (DSP FPGAs etc.) 
 Standard FMC [7] mezzanine solution using powerful carrier FPGA resources (DSP specialized Virtex 5 XC5VSX95T) 
 Firmware built-in remote flashing capability for both the FPGAs as well as the DSP code 

Injection & extraction 
synchro loops 

Ext. references 
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VXS [5] DSP FMC-Carrier 

+ + 

= VXS-DSP-FMC-Carrier 
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VXS Standard 
 VXS = VMEbus Switched Serial Standard  

 Standard VITA 41.0 [5] (2006 - now) 
 Dual star backplane interconnect from payload slots to switch slot(s) 

 High-speed Multi-Gig RT-2 connectors P0 
 High bandwidth up-to 6.4 Gb/s supported 
 Low latency point to point 
 Reduced real-estate for interconnects 
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 2 (A and B) x 4 full-duplex Giga-bit Serial links per payload slot 
 Switch Slot A connects to all “A” links of all Payload slots. 
 Similar for switch slot B 
 16 full-duplex interconnects between both Switch Slots (not shown) 

 
 
 

A B 

A 

B 

B&W Picture source: 
VITA AV41DOT0 



VXS Boards 
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The High-speed Multi-Gig RT-2 connectors support:  
 8 Channel full-duplex High-speed differential signaling + 
 I2C [6] Control link (Payload to Switch board) 

 

No VME interface 

B&W Pictures source: 
VITA AV41DOT0 
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VXS Crate 
overview 
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 FPGA Mezzanine Card standard VITA 57.1 [7] 
 Two flavors 

 Low-pin count connector 
 160 pins = 34 diff pairs* (68 single-ended) single bank IO voltage. 

 High-pin count  connector 
 400 pins = Bank A: 58 diff pairs* AND Bank B: 22 diff pairs* with separate IO voltage per Bank 

 FMC Bank A IO (and FPGA VCCO) programmable voltage is  supplied by the FMC 
Carrier (Vadj) as requested by mezzanine IPMI [8] ROM. 

 FMC Bank B IO (and FPGA VCCO) is powered from the FMC mezzanine 
(VIO_B_M2C). Also declared by the mezzanine IPMI ROM. 

 
 
 
Notes: 
* Or: single-ended = 2 * number of diff pairs 
IPMI = Intelligent Platform Management System 

 



FMC Modules 
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 High Pin Count FMCs Developed [11] 
 ADC 16 bit 125 MS/s (DDC) 
 DAC 16 bit 250 MS/s (SDDS) 
 DDS (can be used as Master Direct Digital Synthesis) 

 
 

Notes: 
DDC = Digital Down Converter 
SDDS = Slave Digital Direct Synthesizer 

 

 
 



ADC (DDC) FMC 
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Characteristics: 
 General purpose 4 channel, 125MS/s acquisition module with 16bits architecture. 
 Provides signal conditioning with an analogue front-end featuring DC coupling, low 

noise, low distortion and gain switching (equivalent to 3 LSBs). 
 DC to 40MHz (oversampled) bandwidth. Can be extended by a factor of 10. 
 SNR > 77dB (12.5 ENOB), SFDR > 70dB 



DAC (SDDS) FMC 
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Characteristics 
• 2 x 16bit Dual DACs (AD9747), Fs <= 250MS/s -> 4 identical CHs 

• DC coupled output, 40MHz analog bandwidth, peak output voltage 3.6 Vp-p 

• 400-pin FMC connector for parallel data interfacing 

• Low noise and low distortion amplifiers 

• Compact front-panel for heat dissipation and 3-color status indication LEDs 

• Unique PCB identification by silicon ID chip and a system monitor chip 

• IPMI EEPROM with HW specific information (FMC type, Version number, operating voltage etc.) 

• Programmable 18 dB analog gain switch < 30 ns for dynamic range shift 
• Measured wideband SFDR > 60 dB 



DDS FMC 
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Characteristics: 
• High quality compact clock and synchronism generator. 
• Integrated random time jitter: 674 fs RMS 
• Can generate a clock signal from 62.5 MHz to 125 MHz, and the associated revolution 

synchronism signal at any FRev sub-harmonic from 1 to 16535. 
• It features two independent channels, synchronized to the same reference, with 

synchronization pulse (tag) generators. 
• 32bit DDS core: 232 mHz frequency step resolution. 
• Compatible with LPC and HPC FMC standard. 

 
 



VXS DSP FMC Carrier 
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 A VME64x board with VXS 
 VXS bank A banks fully equipped with 4 full-duplex channels, bank B with 2 
 Raw link-speed either 2 Gb/s. 

 Two High-pin count FMC sites 
 Sites have independently programmable Vadj 
 4 FPGA IO banks (~20 diff pairs/bank)  per  FMC site.  

3 FPGA IO banks for FMC Bank A, 1 FPGA IO bank for FMC Bank B. 
 4 full-duplex Serial Giga-bit links to FMC_FPGA per FMC site. 

 Two Virtex5 FPGAs: XCVSX95T-1FF1136 & XC5VLX110T-1FF1136  
 FMC_FPGA hosts the FMC DSP intensive code, interfaces with both FMCs, communicates to the 

Main_FPGA via 8 Serial Giga-bit links and a parallel bus. 
 Main_FPGA manages the communication with: VXS, FMC_FPGA, VME64x, DSP. 

 A Sharc DSP 400MHz: ADSP-21369 
 A16 / D32 interface with Main_FPGA. 
 Alternate Serial ports connected to Main_FPGA. 

 Memory Banks 
 Two 4 M x 18 @ 100 MSPS (CY7C1472V33) 
 Two 1 M x 4 x 18 @ F-RF MSPS (CY7C1474V33) 

 RF Clock and Tag distribution. 
 

FMC FPGA Main FPGA DSP 

FMCs 
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Wishbone 
SoC1 Interconnection Architecture for Portable IP Cores [9] 

• Simplifies design reuse & integration 
• Common standardized GP interface 
• Decouples IP cores 
• Divide & Rule: more control interfaces easier to manage 
• Easily extendable to seamlessly interconnect FPGAs 
• Enables individual software driver (per core) support 
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Memory Map management 
The Cheburashka memory map configuration tool [10] has been created to 
achieve: 

• Common definition of memory maps for FPGAs, CPU Software, DSPs 
• Automatically generate the memory map VHDL package as well as the register control 

block VHDL (using GENA [10]). 
• Automatic creation of the Linux CPU device driver configuration 
• Automatic creation of a debug FESA (middleware) class 
• Support for construction nested (by reference) memory maps 
• Support for interface reversal (read-only to read-write and vice-versa) 
• Automatic creation of DSP header files 
• Integrated documentation: XML files from Cheburashka can be displayed on a web 

browser 
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• Hardware 
• Laboratory and successive tests on CERN PSB Ring 4 with a 2 board system, 

built in V1 hardware (VXS-DSP-FMC Carrier and VXS-Switch) have 
successfully demonstrated the feasibility of the new digital Low-level RF 
system. 

• The pre-series of V2 hardware has been validated 
• At present the 3 board system (V2 hw) has been transferred to a MedAustron 

test stand for specific MedAustron software developments 
• Firmware 

• The FPGA firmware developments are nearing completion 
• Remote updating of FPGA firmware and DSP now available 
• IPMI for FMC developments has started 

• Software 
• Test DSP code has demonstrated successful. Code now well advanced for the 

MedAustron / PSB system 
• The device drivers and test FESA classes generated with help from 

Cheburashka work nicely in synchronism with the firmware 
• A control room application will be created this year. 



Planning (non exhaustive) 

J.C.  Molendijk - LLRF 2013 27 

• MedAustron 
• Cavity test-stand commissioning, Oct. Nov. 2013 
• System Deployment in Austria Feb. 2014 onwards 

• PS Booster 4 rings 
• System deployment and commissioning from April 2014 
• Finemet tests from late 2014 and onwards 

• LEIR 
• Upgrade to the new LLRF in 2015 

• ELENA1 LLRF + Longitudinal diagnostics + Beam orbit system 
• Systems to be deployed and commissioned in 2016 

• AD2  LLRF + Longitudinal diagnostics system 
• Upgrade to the new hardware in >= 2017 

• … 
 

1 ELENA: Extra Low ENergy Antiproton synchrotron [13] 
2 AD: Antiproton Decelerator [14] 



Conclusion 
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• The developed standardized hardware opens the way to many alternative 
applications beyond the scope of LLRF alone 

• The novel modular approach using the wishbone bus has shown very 
efficient in a multi developer environment 

• The tool used to guarantee coherent memory-maps between the software 
and hardware world has been essential for the success of this project 

• The automatic register bank VHDL code generation tool is saving lots of 
time allowing to largely cut the firmware development time 

• The built in remote FPGA and DSP reconfiguration tool simplifies machine 
development and operation 

1 ELENA: Extra Low ENergy Antiproton 
synchrotron 



Thank you for your attention. 
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DDC Overview 
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 The down converter is 
an homodyne receiver 
that converts the 
selected beam 
revolution harmonic 
into a baseband I/Q 
signal. 

 
 It features a multi-rate 

fast signal processing 
hardware embedded 
into the FPGA IP core. 



DDC Overview 
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The narrowband dynamic range is controlled by an 
automatic gain control, maximizing the SNR when 
the input signal power does not fill the ADC range. It 
adds 18dB to the effective analog dynamic range. 

 

Further improvement is obtained with process gain: 
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The narrowband dynamic range is controlled by an 
automatic gain control, maximizing the SNR when 
the input signal power does not fill the ADC range. It 
adds 18dB to the effective analog dynamic range. 
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• Delay corrector, Azimuth, phase offset compensation and MDDS harmonic number change 
compensation features 

• Selectable amplitude and phase modulations, and noise generation for the controlled beam 
emittance blow-up 

• Comprehensive signal observation through SRAM memory 

• Highly flexible signal generator with many features 

 Contains SPI, I2C, Memory, power supply and A/D gain processing controllers 

 Has a direct VME, DSP and memory access but also FMC to FMC IP core link, main 
FPGA to FMC FPGA link for status/faults etc., PG indication signals and many more… 

 Multiple debugging options 

 Amplifier offset compensation manually and automatically according to the preference 

• User selectable manual/automatic amplifier DC offset compensation 
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All measurements are 
completely independent 
and unrelated 

DAC mezzanine output 

FFT of the 16-bit NCO 
signal ~ 5MHz, peak at 
89dB (Matlab plot) 

DAC mezzanine V1 during testing 

-61dBm 

71dB 

+10dBm 

SFDR 

SFDR ~ 60dB between 
3MHz – 40MHz 
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Simplified block diagram: 
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The RF Clock follows the frequency 
program (Frev) at an harmonic such that 
the output frequency falls always between 
the maximum sampling frequency and half. 

This scheme allows the homodyne 
system to track the selected Frev 
harmonic, while maintaining the 
sampling rate high enough to 
guarantee a minimum SNR. 
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Divider change + Tag synch pulse 125MHz clock phase noise 

Random jitter at the clock output vs output frequency B-Field frequency ramp 
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System clock distribution context: 
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VXS DSP FMC Clock Distribution 
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