Advanced Focusing Concepts for Next-Generation Accelerators and Storage Rings

$\mathsf{Tim} \; \mathsf{Zolkin}^1$

¹Fermi National Accelerator Laboratory

9 December, 2019

Tim Zolkin Advanced Focusing Concepts

Goals in focusing concepts

Light sources

Produce globally linear map (removal of all nonlinear resonances, frequency are independent of the amplitude)

Proton machines (machines with instability)

Nonlinear optics (frequency-dependent amplitude) and integrals of motion

What do we know now?

Implemented Advanced Focusing Concepts

- Round beams at VEPP-2000 (BINP)
 [S. Danilov and E. A. Perevedentse])
- IOTA (FNAL)
 [S. Danilov and S. Nagaitsev])

Advanced Focusing Concepts in development

- McMillan lens
 - 1D McMillan Lens [E. McMillan]
 - Near-integrable electrostatic McMillan lens [S. Danilov]
 - Axially symmetric electron lens [S. Danilov]

Lattice design based on the Yoshida integrator [S. S. Baturin]

▲ □ ▶ ▲ □ ▶ ▲

$$q' = p$$
$$p' = -q + \frac{2\epsilon}{p^2 + 1}$$

- 1D map
- Hard to generalize to higher dimensions
- Not very stable to perturbations

Bifurcation diagram of octupole McMillan map.

New 1D mappings

Mappings with polygon invariants [T. Zolkin, S. Nagaitsev]

▲御▶ ▲ 臣▶ ▲ 臣▶

э

Perturbation theory and McMillan Map

For the general map

$$q' = (a p^{2} + b p q + c q^{2}) + (d p^{3} + e p^{2} q + f p q^{2} + g q^{3})\varepsilon + \dots$$

$$p' = (\bar{a} p^{2} + \bar{b} p q + \bar{c} q^{2}) + (\bar{d} p^{3} + \bar{e} p^{2} q + \bar{f} p q^{2} + \bar{g} q^{3})\varepsilon + \dots$$

one can show that there is an approximate integral of motion

$$\mathbf{K} = (\alpha \, \mathbf{p}^2 + \beta \, \mathbf{p} \, \mathbf{q} + \gamma \, \mathbf{q}^2) + (\delta \, \mathbf{p}^2 \mathbf{q} + \epsilon \, \mathbf{p} \, \mathbf{q}^2) \,\varepsilon + \zeta \, \mathbf{p}^2 \, \mathbf{q}^2 \,\varepsilon^2$$

Mu2e delivery ring: tracking vs perturbation theory.

Application of mappings with polygon invariants

- Construction of near-integrable Cohen-like mappings
- Foundation for another perturbation theory
- Understanding of topology for near-resonance mappings with smooth force function

Questions we should Ask Ourselves

- Do we really need an integrable system or near-integrable system is enough?
- How we will define near-integrable system?
- Can we have a nonintegrable system with isolating integral in 6D? Is it possible to create chaotic system like that?
- Can we create a structurally stable system?
- How we define perturbations for structural stability? Can we create a strange attractor?

Near-integrable electrostatic McMillan lens

State of art simulation by I. Morozov

Near-integrable electrostatic McMillan lens

State of art simulation by I. Morozov (BINP)

This 4D map can be realized in accelerators by employing the electron lens:

$$\begin{bmatrix} x'\\p'_{x}\\y'\\p'_{y}\\p'_{y} \end{bmatrix} = \begin{bmatrix} \alpha_{x}x + \beta p_{x}\\-\gamma_{x}x - \alpha_{x} p_{x} + \frac{ax'}{br^{2}+1}\\\alpha_{y}y + \beta p_{y}\\-\gamma_{y}y - \alpha_{y} p_{y} + \frac{ay'}{br^{2}+1} \end{bmatrix} \rightarrow \begin{bmatrix} r'\\p'_{r}\\\theta'\\p'_{\theta}\\p'_{\theta} \end{bmatrix} = \begin{bmatrix} \sqrt{p_{r}^{2} + \frac{p_{\theta}^{2}}{r^{2}}}\\-p_{r}\frac{r}{r^{r}} + \frac{ar'}{br^{2}+1}\\\theta + \arctan\frac{p_{\theta}}{rp_{r}}\\p_{\theta} \end{bmatrix}$$

It has two integrals of motion

$$\mathcal{K}[r, p_r, p_{\theta}] = b r^2 p_r^2 + r^2 - a r p_r + p_r^2 + \frac{p_{\theta}^2}{r^2} \quad \text{and} \quad p_{\theta} = x p_y - y p_x.$$

Axially symmetric electron lens

[S. Nagaitsev NAPAC-19 (FERMILAB-POSTER-19-122-DI-SCD)]

Lattice design based on the Yoshida integrator

S.S. Baturin ArXiv:1908.03520

Yoshida lattice with sextupoles - a linear ring with three sextupole

(日)

Hamiltonian preserving nonlinear optics

Algorithm

1. Pick an integrator for a smoth Hamiltonian in normalized coordinates

2. Set optics with the step in phase prescribed by the integrator

3. Set nonlinear magnet strength according to similarity transformation

$$\mathbf{B}(s_1) \circ K_h \circ \mathbf{B}^{-1}(s_1)$$

Applying Mathematical Methods in Integrable Hamiltonian Flows to the Analysis and Design of Nonlinear Accelerator Lattices (1)

Finding Phase Space Critical Points and Bifurcation Sets

 Need: To understand the global, qualitative single-particle dynamics accessible in accelerator lattices based on nonlinear integrable optics.

Critical initial conditions at nominal IOTA insert strength

3.5

•

٠

Applying Mathematical Methods in Integrable Hamiltonian Flows to the Analysis and Design of Nonlinear Accelerator Lattices (2)

Extracting Characteristic Tunes from Invariants of Motion

- Need: To understand analytically the orbital frequency content (nonlinear tune spread), critical for prediction and control of Landau damping.
- Problem: Traditional methods for analysis of integrable Hamiltonian systems rely on action-angle coordinates, which are difficult to obtain in explicit form in most cases, and which break down near critical phase space structures.
- Solution: Characteristic frequencies may be extracted using sets of path integrals taken over the invariant level sets, requiring only knowledge of the invariants of motion.

Examples of cycles on an invariant torus for computing frequencies

(日)

-

Characteristic frequencies in IOTA along a line of initial conditions in the (x,y) plane

S. Nagaitsev arXiv:1910.08630

æ

- Sextupole and octupole terms are in the form of McMillan integrable mappings
- Estimate of dynamical aperture near 1st, 2nd, 3rd and 4th order resonances (critical points of the invariant)
- Distortion of the ellipse trajectories on larger amplitudes (\triangle , \Box , C- or S-shapes)
- Amplitude dependent betatron frequency $\mu(q_0, p_0)$

Example for Hénon octupole map

Tim Zolkin Advanced Focusing Concepts

э

Summary

Road map for integrable optics

- Find systems integrable in continuous space of parameters (ideally all 3 DOF)
- Find systems with large spread of frequencies
- Inclusion of SC

Road map for analytical research

- Development of general analytical tools: perturbation theories for near integrable and extraction of dynamics from invariants of motion for integrable systems.
- Better understanding of nonlinear coupling
- Use of advanced tools (SALI, GALI, genetic algorithms)

Road map for theoretical understanding

- Integrability vs Near-Integrability vs Isolating integrals
- Define perturbations for structural stability studies
- Integrable systems vs Ergodic systems vs Strange Attractors

Many thanks to S. S. Baturin, C. Mitchell, I. Morozov, S. Nagaitsev and J. Eldred.