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Goals in focusing concepts

Light sources

Produce globally linear map (removal of all nonlinear resonances,
frequency are independent of the amplitude)

Proton machines (machines with instability)

Nonlinear optics (frequency-dependent amplitude) and integrals of
motion
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What do we know now?

Implemented Advanced Focusing Concepts

Round beams at VEPP-2000 (BINP)
[S. Danilov and E. A. Perevedentse])

IOTA (FNAL)
[S. Danilov and S. Nagaitsev])

Advanced Focusing Concepts in development

McMillan lens

1D McMillan Lens [E. McMillan]
Near-integrable electrostatic McMillan lens [S. Danilov]
Axially symmetric electron lens [S. Danilov]

Lattice design based on the Yoshida integrator [S. S. Baturin]
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1D McMillan Lens

q′ = p

p′ = −q +
2 ε

p2 + Γ

1D map

Hard to generalize
to higher dimensions

Not very stable to
perturbations

Bifurcation diagram of octupole McMillan map.
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1D McMillan Lens

New 1D mappings

Mappings with polygon invariants [T. Zolkin, S. Nagaitsev]
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1D McMillan Lens

Perturbation theory and McMillan Map

For the general map

q′ = (a p2 + b p q + c q2) + (d p3 + e p2q + f p q2 + g q3)ε+ . . .
p′ = (ā p2 + b̄ p q + c̄ q2) + (d̄ p3 + ē p2q + f̄ p q2 + ḡ q3)ε+ . . .

one can show that there is an approximate integral of motion

K = (α p2 + β p q + γ q2) + (δ p2q + ε p q2) ε+ ζ p2 q2 ε2

Mu2e delivery ring: tracking vs perturbation theory.
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1D McMillan Lens

Application of mappings with polygon invariants

Construction of near-integrable Cohen-like mappings

Foundation for another perturbation theory

Understanding of topology for near-resonance mappings with
smooth force function
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Questions we should Ask Ourselves

Do we really need an integrable system or near-integrable
system is enough?

How we will define near-integrable system?

Can we have a nonintegrable system with isolating integral in
6D? Is it possible to create chaotic system like that?

Can we create a structurally stable system?

How we define perturbations for structural stability? Can we
create a strange attractor?
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Near-integrable electrostatic McMillan lens

State of art simulation by I. Morozov
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Near-integrable electrostatic McMillan lens

State of art simulation by I. Morozov (BINP)
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Axially symmetric electron lens [Slava Danilov]

This 4D map can be realized in accelerators by employing the
electron lens:


x ′

p′x
y ′

p′y

 =


αxx + β px

−γxx − αx px + a x ′

b r ′2+1

αyy + β py
−γyy − αy py + a y ′

b r ′2+1

 →

r ′

p′r

θ′

p′θ

 =



√
p2r +

p2θ
r2

−pr r
r ′ + a r ′

b r ′2+1

θ + arctan pθ
r pr

pθ


It has two integrals of motion

K[r , pr , pθ] = b r2p2r +r2−a r pr +p2r +
p2θ
r2

and pθ = x py−y px .
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Axially symmetric electron lens

[S. Nagaitsev NAPAC-19 (FERMILAB-POSTER-19-122-DI-SCD)]
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Lattice design based on the Yoshida integrator

Hamiltonian preserving nonlinear optics

1 . Pick an integrator for a smoth
Hamiltonian in normalized 
coordinates

2. Set optics with the step in phase 
prescribed by the integrator

3. Set nonlinear magnet strength 
according to similarity transformation

Yoshida lattice with sextupoles - a linear ring with three  sextupole
magnets that mimics dynamics of a well known Henon-Heiles system
based on a 4th order Yoshida integrator.

Poincare surface of section q2=0 
for the Yoshida lattice

Poincare surface of section q2=0 
for the Smooth Hamiltonian

S.S. Baturin ArXiv:1908.03520

Algorithm
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Applying Mathematical Methods in Integrable Hamiltonian Flows 
to the Analysis and Design of Nonlinear Accelerator Lattices (1)

1

•  Need: To understand the global, qualitative single-particle dynamics 
      accessible in accelerator lattices based on nonlinear integrable optics. 
 
•  Problem:  Standard approaches to nonlinear dynamics in the  
      accelerator community are perturbative about the the origin, neglect 
      fully 4D or 6D coupling, or require a clever choice of coordinates. 
 
•  Solution: Differential-geometric methods from the theory of  
      integrable Hamiltonian systems may be applied to locate critical 
      structures (fixed points, periodic orbits, separatrix-like structures 
      in 4D or 6D) using knowledge only of the invariants of motion. 

Finding Phase Space Critical Points and Bifurcation Sets 

Critical initial conditions at 
nominal IOTA insert strength 

Bifurcations of dynamical fixed points 
in IOTA vs. magnetic insert strength 
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Applying Mathematical Methods in Integrable Hamiltonian Flows 
to the Analysis and Design of Nonlinear Accelerator Lattices (2)

2

Extracting Characteristic Tunes from Invariants of Motion  

•  Need: To understand analytically the orbital frequency content (nonlinear  
      tune spread), critical for prediction and control of Landau damping. 

•  Problem:  Traditional methods for analysis of integrable Hamiltonian systems 
rely on action-angle coordinates, which are difficult to obtain in explicit form in 
most cases, and which break down near critical phase space structures. 

 
•  Solution:  Characteristic frequencies may be extracted using sets of path 

integrals taken over the invariant level sets, requiring only knowledge of 
      the invariants of motion. 

Examples of cycles on an invariant 
torus for computing frequencies 

Characteristic frequencies in IOTA along a line of initial conditions in the (x,y) plane 
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     from tracking data (NAFF) 
     solution by quadrature 
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Danilov Theorem

S. Nagaitsev arXiv:1910.08630
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Nonlinear optical functions

inv(s) = α(s) p2 + β(s) p q + γ(s) q2︸ ︷︷ ︸
Courant−Snyder

+ δ(s) p2 q + ε(s) p q2︸ ︷︷ ︸
sextupoles

+

+ ζ(s) p2 q2︸ ︷︷ ︸
octupoles

+ η(s) c.s.2︸ ︷︷ ︸
2nd order correction

Sextupole and octupole terms are in the form of McMillan
integrable mappings

Estimate of dynamical aperture near 1st, 2nd, 3rd and 4th
order resonances (critical points of the invariant)

Distortion of the ellipse trajectories on larger amplitudes (4,
�, C- or S-shapes)

Amplitude dependent betatron frequency µ(q0, p0)

Tim Zolkin Advanced Focusing Concepts



Example for Hénon octupole map
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Summary

Road map for integrable optics

Find systems integrable in continuous space of parameters
(ideally all 3 DOF)

Find systems with large spread of frequencies

Inclusion of SC

Road map for analytical research

Development of general analytical tools: perturbation theories
for near integrable and extraction of dynamics from invariants
of motion for integrable systems.

Better understanding of nonlinear coupling

Use of advanced tools (SALI, GALI, genetic algorithms)
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Summary

Road map for theoretical understanding

Integrability vs Near-Integrability vs Isolating integrals

Define perturbations for structural stability studies

Integrable systems vs Ergodic systems vs Strange Attractors

Many thanks to S. S. Baturin, C. Mitchell, I. Morozov, S.
Nagaitsev and J. Eldred.
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