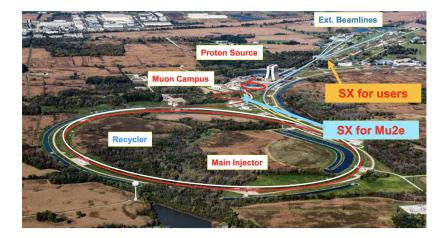
New High-efficiency Slow Extraction Concepts

Tim Zolkin¹

¹Fermi National Accelerator Laboratory

9 December, 2019


Tim Zolkin New High-efficiency Slow Extraction Concepts

The slow resonant extraction of a beam in a storage ring is a very well-established technique used by several high-energy physics accelerator facilities around the world. At the same time, the demand for beam power is constantly growing, extraction efficiency in many cases is becoming a limiting factor. A low beam loss (high extraction efficiency) operation is required to reduce the machine damage and radiation exposure during hands-on maintenance.

Slow extraction facilities for HEP

Lab	Facility	Particles/sp ill	Spill duration (sec)	Efficiency	Notes
CERN	SPS	4e13	4.0	97%	Highest energy 450GeV
J-PARC	Main Ring	4.8e13	2.1	99.5%	Highest efficiency
FNAL	Main Injector Mu2e (design)	1e13 1e12	4 0.043	96% 98.5%	- Shortest spill
IHEP	U70	(2-10)e12	1.35	90-94%	
GSI	SIS18	1.4e6	1.55		lons
BNL	AGS (stopped)	7.6e13	2.4	98%	SX discontinued

æ

3

JPARC

- Large apperture (e.g. FNAL ring is desing for antiprotons which is smaller)
- $\blacksquare \approx 50 m$ beta function vs. $\approx 15 m$ at FNAL
- Bigger budget
- Ti septum
- 0.5% losses vs 1.5% FNAL

→ < Ξ → <</p>

Milestone: beat the efficiency record

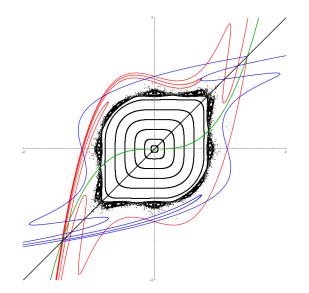
Shadowing

 Crystal channeling [demonstrated at SPS — would this be effective at 8-30 GeV]

Diffusers

[was not effective at SPS, should be more effective at J-PARC, FNAL] $% \left[\left({{{\rm{S}}_{{\rm{s}}}}_{{\rm{s}}} \right)_{{\rm{s}}} \right)_{{\rm{s}}} \right]$

Using novel low-Z materials

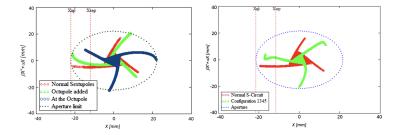

Using Carbon Nano-Tubes (CNT) wire as septum

Phase space manipulation

 Higher multipoles [demonstrated at SPS]

イロト イポト イヨト イヨト

Phase space manipulation

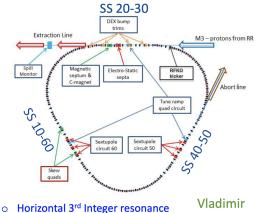


æ

Some questions

- Demonstrated at SPS, but do we fully understand why?
- Unstable flow bend vs wiggle?
- Can we use higher multipoles? Will the effect be mitigated by physical aperture?
- How the wiggle of separatrix changes our "naive" idea that losses are proportional to the ration of septum width to the one step on separatrix?
- Can we use higher order resonances (4-th, 5-th, etc.)?
- Can we use the concept of integrable optics?

Unstable flow bend vs wiggle

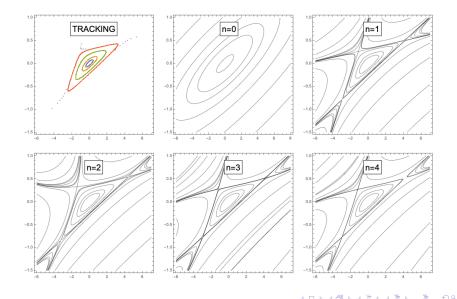

[V. Nagaslaev PhysRevAccelBeams.22.043501]

(日)

э

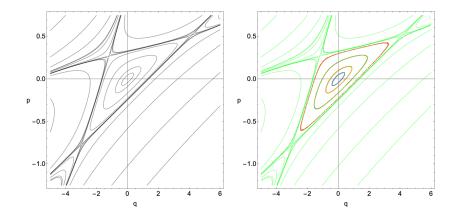
Implementation of Resonant Extraction in the Delivery Ring for Mu2e

- New injection point •
- Extraction in SS 20-30 ٠
- Electro-static septa •
- . 2 families of harmonic Sextupoles
- A family of tune • Quadrupoles
- Extraction Lambertson .
- Dynamic orbit control •
- Abort line .
- **RFKO** system •
- Spill monitoring .
- Spill regulation .



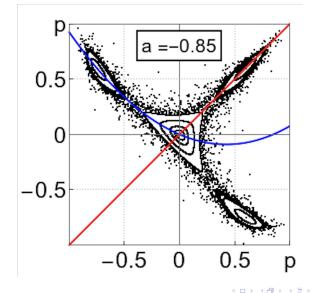
 $Q_{x} / Q_{y} = 9.650 / 9.735$

Nagaslaev

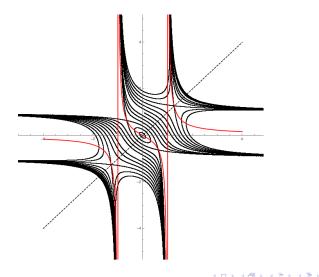

< ロ > < 同 > < 三 > < 三 >

0-th — 4-th order approximated invariants, $\mathcal{K}^{(n)}(p,q)$

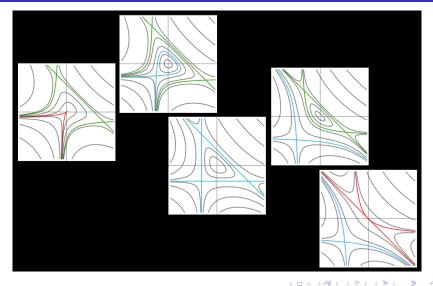
Tim Zolkin New High-efficiency Slow Extraction Concepts


4-th order vs. tracking

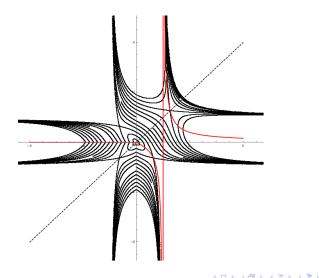
æ


≪ ≣⇒

Can we use the concept of integrable optics?



Tim Zolkin New High-efficiency Slow Extraction Concepts


Example 1: Octupole McMillan map, $f(q) = -\frac{2 \epsilon q}{q^2 + \Gamma}$ $\mathcal{K}(q, p) = p^2 q^2 + \Gamma (p^2 + q^2) + 2 \epsilon p q$

Example 2: Sextupole McMillan map, $f(q) = -\frac{q(q+2\epsilon)}{q+\Gamma}$ $\mathcal{K}(q,p) = p^2 q + p q^2 + \Gamma (p^2 + q^2) + 2\epsilon p q$

Example 3: Picewise McMillan map, $f(q > 0) = -\frac{2 \epsilon q}{q^2 + \Gamma}$ $\mathcal{K}(q, p) = p^2 q^2 + \Gamma (p^2 + q^2) \pm 2 \epsilon p q$

Road map for slow extraction

- New low-Z materials, crystal channeling, diffusers
- Better understanding of chaotic unstable flow
- Better understanding of potential of integrable latices
- Development of analytical tools for dynamics analysis

Many thanks to V. Nagaslaev and S. Nagaitsev.