

Practical implementations of nonlinear focusing in rings

Alexander Valishev GARD ABP Roadmap Workshop #1 December 9, 2019

Motivation for Experimental R&D on Nonlinear Focusing Lattices for Rings

- Theory work discussed in T.Zolkin's talk
- We aim to construct accelerator focusing systems that are fully nonlinear 'by design' and not as a perturbation
- This talk discusses
 - Experimental verification of novel theoretical concepts
 - Advance physics of accelerators and beams to enable future accelerators
 - Guide and help to fully exploit science at the GARD beam facilities and operational accelerators
 - Practical implementations in future HEP (and possibly other) facilities
 - Develop conventional and advanced accelerator concepts and tools to disrupt existing costly technology paradigms in coordination with other GARD thrusts

Goals of Experimental NIO Research

- Experimentally demonstrate viability of theoretical concepts
 - Most importantly, show whether nonlinear focusing lattices offer practical benefits relative to linear lattices
 - Very strong academic interest stability of nonlinear systems
- Establish limits of applicability
 - Are requirements to implementation tolerances supported by present-day technology?
- Develop practical solutions for circular accelerators pushing the envelope in beam brightness without significant cost increase

Relevance to HEP Missions

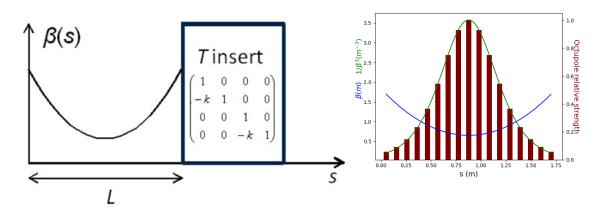
Potential applications of strongly nonlinear focusing rings

- Intensity frontier high-intensity and high-brightness rapid cycling synchrotrons.
 - Mitigation of ultra-fast coherent instabilities via Landau damping*
 - Mitigation of space-charge related losses*
- Energy frontier circular colliders (e.g. FCC)
 - Cost-effective mitigation of coherent instabilities via Landau damping*

*discussed by V.Shiltsev

There are strong synergies with other SC offices

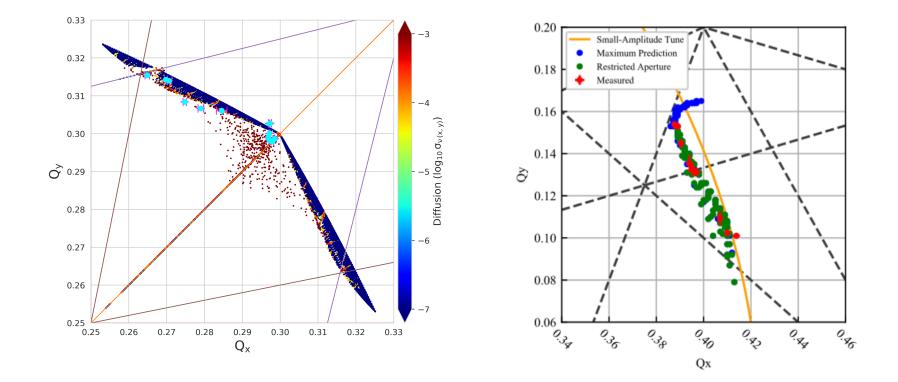
- Nonlinear systems can find application in
 - EIC
 - Ion traps
 - Light sources
- Technologies and tools used and developed as part of experimental NIO research include
 - Machine learning and controls
 - Advanced beam instrumentation
 - Simulation and modeling


Workshop #2

Present Status of Nonlinear Integrable Optics (NIO) Experiments

- Two R&D facilities pursue implementation of solutions based on insertion of a nonlinear potential to a fraction of ring circumference
 - UMER (UMD)
 - IOTA (Fermilab)
- Present concepts are based on precise control/tuning of linear part of the machine and accurate realization of the nonlinear potential – the two main risks

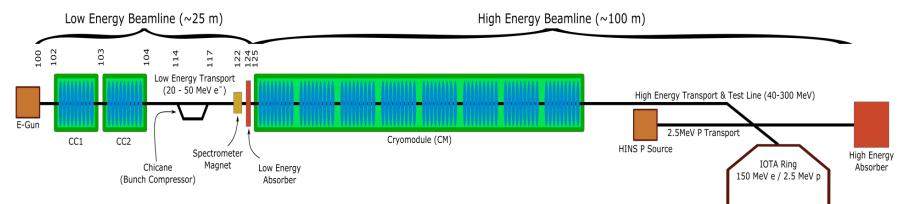
🌫 Fermilab



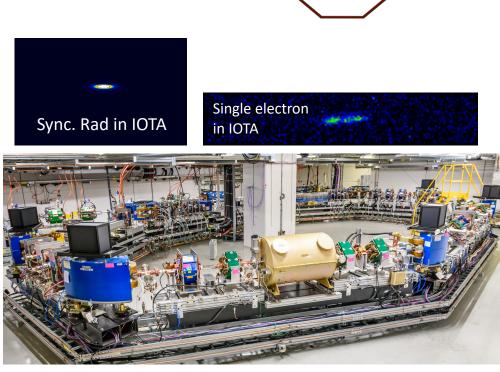
6

Present Status of NIO Experiments

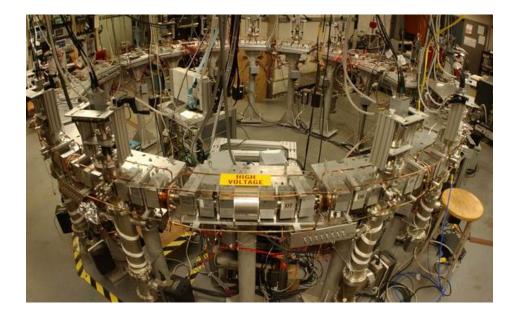
- IOTA Run-1 showed strong potential
 - Nonlinear amplitude-dependent tune shifts of 0.05-0.1 without degradation of dynamic aperture



Facilities


- Small size dedicated R&D machines for proof-of-principle research
 - IOTA
 - UMER
- Large scale tests could be conducted in production machines
 - RHIC
 - LHC
 - Fermilab RCS
 - Light sources

IOTA/FAST Facility: a center for Acc. and Beam Physics

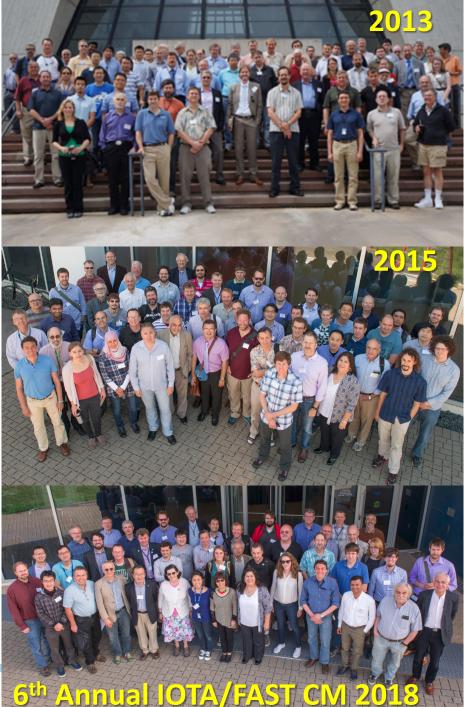

- The only dedicated facility for intensity-frontier accelerator R&D; ranked as top facility ("Tier 1") for acc. & beam physics thrust by recent GARD review
- Adequate for tests of many concepts that have been proposed to date
- Could benefit from
 - Upgrades to improve flexibility
 - Strengthening of operations

UMER

- Using a scaled low-energy electron beam, UMER cleverly accesses the intense, high-brightness, regime of beam operation in accelerators, at a much lower cost than larger and more energetic machines.
- Very good for training students; development of instrumentation
- Limited application for studies of single-particle dynamics
- Possible considerations
 - Bunched-beam operation
 - Ultra-low intensity / high sensitivity instrumentation

Possible Timeline

- IOTA Proof-of-principle experiments with electrons (singleparticle regime)
 - Presently considered systems
 - 1 invariant of motion (Octupoles)
 - 2 invariants of motion (Danilov-Nagaitsev)
 - 2 invariants of motion (McMillan e-Lens)
 - New/future proposals
- IOTA research with proton beams
- Large machine / scalability studies


2019-2021 2019-2022 2021-2025 2021-2027 2021-2027 2021-2030

IOTA/FAST Collaboration

~30 Partner Institutions:

- ANL, Berkeley, BNL, BINP, CEA/Saclay, CERN, Chicago, Colorado State, Fermilab, DESY, IAP Frankfurt, JAI, JLab, JINR, Kansas, KEK, LANL, LBNL, ORNL, Maryland, U. de Guanajuato Mexico, NIU, Michigan State, Oxford, RadiaBeam Tech, RadiaSoft LLC, Tech-X, Tennessee, Vanderbilt, SLAC
- NIU-NICADD: strategic ties
- EIC/MARIE/BES: many R&D opportunities

