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Electron Microscopy e

@ 1930s (Ruska & Knoll)
@ 75 keV e- LINAC

@ Higher resolution than light
microscopy

el Physics:
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Objektivspule

Verlangerungstubus

@ What'’s happened since
then?

@ Where Accelerator R&D
could help advance the
state-of-the-art
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Fig. 5: First (two-stage) electron microscope magnifying higher than the light microscope. Cross-

P. Denes .}I@ Electron Mlcroscopy .}I@ 20191209 .}I@ Sllde 1 section of the microscope column (Re-drawn 1976) [15].



Synergies

« Describe potential synergies and connections to other
GARD thrusts and other SC offices (BES, NP, QIS, FES,
etc)

There are many types of ‘electron microscopes’
Concentrate here on those with beam energies sufficient for atomic resolution
And on real space imaging (diffraction — generally — averages over sample)

Connections: EM is a key discoverytool for materials science and
structural biology

 Motivation (why EM?)

} HHT

 Challenges &

2= Fermilab
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Conventional TEM Rl
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Seeing Atoms Sl

BERKELEY LAB

KHZO Resolve atoms — spaced d ~ 1 A apart
0.9584 A

Diffraction Limit: A < d

Microscope __________A[A]

Visible light 4,000
Soft X-ray <10
Hard X-ray <1
Electron «<0.1

Electron Microscopy continues to be the best way to image

at the atomic (or near-atomic) scale
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(S)TEM - “equivalent” e
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(S)TEM Rl
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Optics ]
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EM: After Rose
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Graphene on TEAI\/I 0.5 2l
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Challenge Szl
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“It would be very easy to make an analysis of any
complicated chemical substance; all one would have to
do would be to look at it and see where the atoms are.
The only trouble is that the electron microscope is one
hundred times too poor ... | put this out as a challenge: Is
there no way to make the electron microscope more
powerful?”

— Richard P. Feynman, 1959,
“There’s Plenty of Room at the
Bottom”
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Getting There oy
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Y Yang, CC Chen, MC Scott*, C Ophus* P Ercius, et al., Nature 542, 75 (2017) Movie from F Niekiel and C Ophus

We can now see — and identify — every atom Iin a nanoparticle
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Electrons vs. X-rays

Barns
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Carbon, here, as an example
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Introduction: Grand challenges

For Electron Microscopy

 Grand challenge #2 (beam quality): How do we increase
beam phase-space density by orders of magnitude, towards
guantum degeneracy limit?

 Grand challenge #3 (beam control): How do we control the
beam distribution down to the level of individual particles?

2= Fermilab
13



Challenges ol
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-« ] Spatial Resolution — largely solved
‘ See atoms (under ideal observation conditions)

Energy Resolution — source and optics
OE = 0: Spectroscopy++

Temporal Resolution — source+
ot = 0: What are the limits?

“Efficiency” — reduce sample damage
More buck for the bang

Temperatures other than room temperature
Atomic resolution at T ~ 0 (quantum phenomena)

P. Denes #% Electron Microscopy <% 20191209 ¥ Slide 14



The Source

Filament Heating Supply
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Spectroscopy O E |l
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@ |nelastic scattering
@ STEM

@ (Today) beam
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@ Reduction in beam current
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Time Resolved [ns] O T [l
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@ Laser-driven photocathode

@ Frame shifter
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Bostanjoglo, Ultramicroscopy 1987
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Ultrafast Electron Microscope | ‘ . DTEM
UEM s

Time Resolved [<ps]

p @ Pump
Femosscond r |- ® Probe-Probe-Probe
| ® Many e- / Probe pulse

Fl"\

-~

® UEM
C @ Pump
® Probe
® ~1 e- / Probe pulse

Imaging
Diffraction
Spectroscopy
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Time Resolved [<ps] ot ﬁl

@ FEL gun

@ Bunch charge Q
@ Bunch width 6t KEHHEEN
@ E ~ MeV (space chrge) "

2 -4 MeV 730 keV

Single shot - 360 Hz <1 MHz

1-100 0.1-10fC

<150 fs FWHM* ~100 fs FWHM*
100-200 um (typical), 10 um (FWHM) focused 50-200 um (typical)

*(depending on charge)

P. Denes #% Electron Microscopy ¥ 20191209 % Slide 19 Weathersby..Wang, RSI 2015



Multipass (“Quantum”) EM ke kR

Consider a weak phase signal: \_/"\_/ t ¢ o max phase shift

} mf o l\/\/ I\\/\\/A t\/\\/ﬂ F\/AVA tvﬂvﬂ F\/A\/A

Do 1 pass m times. Intensity « me?3
Do m passes 1 time. Intensity « m?¢?2

In each case, the sample sees m electrons. “Figure of merit”:
Intensity/Dose x ¢§ — single pass
Intensity/Dose x m¢§ — single pass

P. Denes % Electron Microscopy % 20191209 # Slide 20 From Colin Ophus, NCEM/Molecular Foundry



Multipass (“Quantum”) EM K& kgl

electron source

/\— barn door
/] >

lens

- ol s s o s ==

coupler

lens

sample

lens

lens

barn door

detector

P. Kruit ... M. Kasevitch Ultramicroscopy 2016
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Ground Truth

by

Best Non-Quantum-

A

Multipass TEM Simulation at 32 e/A2: - Colin Ophus
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Temperature and Stability — NEER)

Atomic resolution at (very low temperatures)
@ Electron-Lattice Coupling

@ exploration of novel phases in temperature regimes not currently possible
at atomic resolution

@ Single photon quantum emitters / optical coupling / QIS

@ spectroscopy at low temperature - similar to STM, but for bulk samples.
@ [n-situ studies

@ stability - multimodal atomic characterization of both hard and soft

materials Liquid Ny loading
@ Omin @ 40min \ @ 190min
Drift on TEAM-I| at 77K il ’ e
Driftl —]

o takes 3 hours to Settle Ultimate drift rate
£ of 3 A/second
oo f extremely poor for
@ 11 j HRTEM
o
(72]
: | , \

Drift data from TEAM | - W.C. Lee, J. Ciston, P. E. Ercius, et al. - 4 <\

Similar to CryoTEM results from other facilities 2 = e o

(i.e.- L. Kourkoutis @ Cornell and Y. Zhu @ BNL) 0 - | - | - | : T - :

60 120 180 240 300

0
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@ Conceptual R&D at LBNL

d % — SC persistent currents

o% _CTE>0atT~>0

Continental drift ~1A/0.1s
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® Experiments

0= ____ FN theory
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@ 10-fold increase in intensity iren WP
UHV chamber CCD-camera —‘"
@ 10-fold smaller energy

Ni tip test UHV setup at the Molecular Foundry

d IStrI bUt'On (20 meV) K. Nagaoka et al, Nature 1998
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Challenges
JoyYB many e-/bunch | 5t-ns | dx-nm

@ Resolution Timits
@ “Slow”: Speed of sound ~ 1 Atom / 100 fs

@ UED - 5t~f/ps m

@ Resolution limits
@ Diffraction (not imaging)

QYA ic/bunch | st-i/ps | 5icA ]

@ Pump-Probe

@ Many shots needed
@ Sample needs At to relax before next shot

@ Can we have it all?

P. Denes #% Electron Microscopy <% 20191209 ¥ Slide 25
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Challenges E oy

@ Can we get a high-brightness source (?) with -

@ 5E ~ 0 — improves every aspect of microscopy
@ Especially spectroscopy

@ “Controllable” ot (with 6E ~ 0)
@ At what current?

@ Can we increase the beam current?

@ While preserving all other properties
@ XFELs > MHz
® EM imaging: ~100 fC / shot

eeeeeeeeeee
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Challenges & R
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® How does EM “outrun” damage?

0ISSO 0 - AN v I\ N = fxDxd?2
Contrast C o« AN/N D = Dose = ptcl/s/Area x Time
Rose Criterion: C 2 k (k = 5) f = factor for scattering and

detection efficiency
= D ~ k?/fxC?xd?
ButC~d = D ~ 1/fxd*

@ Factor 2 in resolution = 16 x Dose

@ Can we employ “entanglement”?

1 1
@—- =
VN N

@® How to realize?

P. Denes * Electron Microscopy # 20191209 % Slide 27 Rose, A, J. Soc. Mot. Picture Eng. 1946
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©0ginal Arist

@ The electron microscope is a et sl o
@ Low energy
@ Low current
@ Quasi-relativistic

linear accelerator |
@ But remarkably successful (-

@ Fertile common ground to explore

@ The ABP thrust explores and develops the science of accelerators and beams to
make future accelerators better, cheaper, safer, and more reliable. Particle
accelerators can be used to better understand our universe and to aid in solving
societal challenges.
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