Experiments to reduce Nuclear Data uncertainties

Y. DANON

Professor and Director Gaerttner LINAC Center Nuclear Engineering Program Director Department of Mechanical, Aerospace and Nuclear Engineering **Rensselaer Polytechnic Institute, Troy, NY, 12180**

WANDA 2020, March 3-5, 2020, Washington, DC

Why do we need experiments ?

- Do not fully understand the physics
- Can not theoretically calculate Nuclear Data with sufficient accuracy required by applications
 - Experiments constrain the uncertainty of evaluated data files
 - Test the accuracy of evaluated files and transport codes physics

Types of experiments

- **Differential experiments**, examples:
 - Neutron cross section as a function of neutron energy
 - Neutron capture cascades gamma spectrum
 - Fission fragment yields
 - Quasi-differential experiments
- Validation experiments, examples:
 - Criticality experiments (benchmarks)
 - Integral shielding measurements
 - Quasi-differential experiments

Differential measurements

• Types of experiments

- Neutron transmission (total cross section)
- Neutron capture yield (capture cross section)
- Fission cross section
- Neutron scattering and angular distribution
- Other novel experiments

Facilities and detectors

- Requires accelerators facilities
 - Short pulse to provide high energy-resolution
 - High intensity
- Variety detector arrays and electronics
 - Detect neutrons, gammas, charge particles
- Samples
 - Pure isotopes, actinides
 - Radiochemistry and thin uniform films
- People
 - Need trained and innovative researchers

AMANDA Li-Glass detector array at RPI

Chi-Nu EJ-309 Detector array at LANL

Neutron reaction cross section experiments

- All energy regions transmission, capture and fission cross sections
- Thermal Region Thermal scattering and accurate scattering cross section (molecular effects)
- URR and fast region elastic and inelastic scattering
- **URR and fast region** angular distributions

One example – resonance region

Measured using the RPI gamma multiplicity detector

- Capture measurements on ¹⁵⁷Gd
- Gd is a strong thermal neutron absorber used in many applications
- Part of a series of measurement on several Gd and Dy natural isotopes.
- New resonances were measured and resonance parameters obtained
- New evaluation in progress

NAVAL NUCLEAR

