

Theory & Evaluation

Patrick Talou Los Alamos National Laboratory

WANDA, Washington, D.C., March 3-5, 2020

Theory & Evaluation

- Nuclear Theory is crucial for the nuclear data evaluation process
 - Need for complete data files to be used in transport codes
 - Theory is needed for predictions (beyond calibration)
 - Provide reasonable estimates of uncertainties and correlations
- Evaluation = Experiments + Theory + Statistics
 - "To the best of our knowledge..." (given time, location, resources)
 - Bayesian statistics / Uncertainty Quantification

Need theory to get complete evaluated data files

Nuclear Theory

- Advances in fundamental nuclear theories
 - Predictions based on more fundamental microscopic theories
 - Ab initio calculations for light nuclei
- Grand Challenges (a selection)
 - Comprehensive, quantitative & predictive theory of nuclear fission
 - Nuclear structure (level densities, isomeric states, branching ratios),
 especially for nuclei away from stability
 - Consistent theories/models of nuclear reaction & nuclear structure
 - Integration of fundamental nuclear physics codes (microscopic, quantum mechanical, event-by-event) directly into transport simulations
 - Development of machine learning-trained emulators on fundamental physics codes
- Strengthen University-DOE labs collaborations
 - Lack of a good pipeline of nuclear theory students
 - Links between fundamental and applied research (both ways)
 - Opportunity to use HPC capabilities to tackle problems of common interest

Nuclear Data Evaluations

Combining the best of our knowledge (exp. & theoretical) about nuclear quantities into tabulated data files

- A (necessarily) compromising task
 - Uncertainties and limitations in experimental data
 - Approximations/assumptions of theoretical models
 - Discrepant observations/information
- Historical trend toward a more scientific and rigorous process
 - General use of theoretical models
 - More realistic account of experimental uncertainties
 - Use of rigorous mathematical and statistical tools (Bayes)
 - Better tools to ensure quality assurance and verification of data files
- Still lots of work to be done; some open questions:
 - How to account for model defects?
 - Realistic simulations of experimental setups, their biases and uncertainties
 - Quality control and improvements of the library itself, e.g., GNDS
 - Rigorous derivation of uncertainties and correlations (covariances)
 - "General purpose" and/or "adjusted" libraries
 - Use of ML techniques to better integrate all sources of information (metadata)

