Evaluation of Energy Dependent Fission Product Yields

T. Kawano, LANL

contributed by A. Sonzogni (BNL), L. Bernstein (LBNL), L. Wood (PNNL), and N. Schunck (LLNL)

Slide 1

Objectives

- ENDF Fission Product Yield (FPY) library produced in 1990's, and limited upgrade made by Chadwick and Kawano to take account of energydependence
- Revival of the FPY evaluation effort
 - Demands for more accurate FPY data rapidly increasing, especially better representation of energy dependence of FPY
 - New theoretical modeling for the fission, prompt and delayed decay processes available
 - New experimental data, not only the FPY data but also relevant observable for the fission phenomena, also available
 - Recognition of importance of new FPY data by international nuclear data communities
 - IAEA will start a new international cooperative research project (CRP)

Energy-Dependent FPY Project Funded by NA22

- Joint effort by 5 laboratories
 - LANL (leading lab) develops FPY models and produce the final FPY data files
 - BNL complies experimental FPY data and produces a set of recommended FPY values, performs FPY data validation calculations
 - LBNL performs measurements of energy-integrated and differential CNAA (Cyclical Neutron Activation Analysis) using the intense neutron source by the LBNL cyclotron, and data interpretation by the FIER code
 - PNNL develops a new Bragg curve based fission TPC (Time Projection Chamber) analysis in collaboration with LANL and LLNL (see Duke's talk)
 - LLNL develops theories and methods to calculate primary fission fragment yields, and performs FREYA calculations for prompt decay

Slide 3

Project Status and Recent Highlights, LANL

- Extending FPY model up to higher energies
 - Inclusion of multi-chance fission by the LANL Hauser-Feshbach code CoH₃
 - Extract required quantities, fission probabilities, average energy of pre-fission neutrons, probabilities of fission at each excitation energy, and calculate TKE at each excitation energies

Project Status and Recent Highlights, LANL (cont'd)

- Better modeling for fission fragment configurations
 - number projection method by Verriere [PRC100, 024612 (2019)]
- Maintaining international FPY evaluation network
 - survey missing experimental data in EXFOR by BNL and IAEA [INDC(NDS)-0793 (2019)]
 - preparatory FPY evaluation meetings at IAEA in Aug. 2019 and Jan. 2020 [IAEA-NDS-230]
 - enhanced capabilities in TALYS (IAEA) and CCONE (JAEA) to produce FPY

Project Status and Recent Highlights, BNL

EXFOR Compilations	Neutron- induced	Charged particle- induced	Gamma- induced
Old articles	53	56	6
New articles	18	1	7

- Number of Fission Yield articles added to **NSR**: 283
- Compilation of all ²³⁸U neutron-induced data is nearly complete
- Corrections of ²³⁸U fission yields to account for more precise decay data is about 50% complete
- JSON format developed in cooperation with the IAEA (V. Zerkin)
- Plots generated for comparison of measured data

BNL team: Andrea Mattera, Libby McCutchan, Boris Pritychenko, Alejandro Sonzogni, JoAnn Totans, Matteo Vorabbi, Olena Gritzvay, Stanislav Hlavac

Project Status and Recent Highlights, BNL (cont'd)

The Berkeley Group is measuring independent fission yields via cyclical neutron activation analysis

- Fast Loading & Unloading Facility for Fission Yields (FLUFFY)
- $^{238,235}\text{U} + \text{Al}_2\text{O}_3$ irradiated using d-breakup and Li(p,n) neutrons at the 88-Inch cyclotron to determine FPY relative to $^{27}\text{Al}(n,\alpha)^{24}\text{Na}$
- 5 s irrad. + 125 s counts
- γ-spec compared to FIER*

*E.F. Matthews *et al.*, NIM, A 891 (2018) 111

E. Matthews

Slide 8

They have also developed a model-independent method of determining fission yield covariances

FPY Project at LLNL

- Use microscopic fission theory to compute initial fragment (distributions and excitation energy) as a function of neutron incident energy
- Started this FY
- Team
 - N. Schunck, R. Vogt, M. Verriere
 - Collaboration with LBNL on FREYA
- **Objectives**
 - Initial fission fragment distributions of major actinides for thermal neutrons (Q1-Q2)
 - Fission fragment excitation energy from time-dependent [%] density functional theory (Q2-Q3) calculations
 - Mass Yield With LBNL: Integrate FIER capability into FREYA (Q2-Q4)
 - Incorporate particle number dispersion in fission fragment calculations (Q4)

