Energy Dependent Fission Product Yields

Anton Tonchev (LLNL)

Matthew Gooden (LANL) Lee Bernstein (LBNL)
Motivation: Provide High-precision, Self-consistent FPY Data to Support Fission Theory and Evaluation

Goal: Predicting independent and cumulative FPYs data simultaneously and consistently in the energy-dependent manner
Previous Campaign: Cumulative FPYs from Long Irradiation

- Peculiar energy dependency
- There is a positive slope of the 147Nd FPY from 0.5 to ~4.0 MeV:
 \[\Delta Y(^{147}\text{Nd})/\Delta E_n = (5.8\pm1.5)\%/\text{MeV} \]
- At higher energies the FPY for 147Nd turns over and decreases

Fission Product Yield Measurements at TUNL using Monoenergetic Neutron Beams

\[
FPY = \frac{\text{Gamma_count}}{\text{Fission_count}} \times \left(\frac{m_{\text{thin}}}{m_{\text{thick}}} \right) \times C_i
\]

Short-lived Fission Product Yields (min – hours)

- Six irradiations on ^{235}U, ^{238}U, and ^{239}Pu at $E_n = 0.56, 1.5, 4.6, 6.5, 9.0, \text{ and } 14.8 \text{ MeV}$
 - Irradiation time = 1 h
 - Transfer time ~ 4 minutes using the JACK-RABBIT System
 - Counting time = one week of continuous counting

- FPY data for more than 45 fission products with half-live of few minutes to a few days

- Providing time dependent FPY information to the FIER* code

* E. Matthews et al. FIER code. NIMA A 891 (2018) 111–117
Short-lived FPYs from Neutron Induced Fission of ^{235}U, ^{238}U, and ^{239}Pu at $E_n = 4.6$ MeV

J. Silano et al. Prepared for publication
Short-lived FPYs from Neutron Induced Fission of ^{235}U, ^{238}U, and ^{239}Pu at $E_n = 9.0$ MeV

![Graph showing cumulative yield of various fission products](image-url)

J. Silano et al. Prepared for publication
Fission Gamma-Ray History of the FPY data

Cumulative fission product yields of ^{235}U and ^{239}Pu as a function of product mass

Fission product gamma-ray ratio as function of incident neutron energy

Time evolution of fission product yield γ-rays from ^{235}U, ^{238}U and ^{239}Pu

A. Tonchev et al. LLNL report. Prepared for publication
Fastest Sample-Irradiated Transfer System in the Entire NNSA Complex

RApid
Belt-driven
Irradiated
Target
Transfer
System

R A B I T T S

Completed
- 1 and 10 m transfer systems
- Transfer time = 400ms/1m or 1s/10m
- Fully synchronized with the DAQ system and beam time structure
- User defined cycles \(t_{\text{irr}}, t_{\text{dec}}, t_{\text{mes}} \) can be repeated many times
- List-mode DAQ based on digital electronics

Performed
- Significant background improvement
- Multiple cycles on \(^{235}\text{U}, ^{238}\text{U}, \text{and} ^{239}\text{Pu} \) at \(E_n = 1.5, 2.0, \text{and} 4.6 \text{ MeV} \)
Fastest Sample-Irradiated Transfer System in the Entire NNSA Complex

RApid

Belt-driven

Irradiated

Target

Transfer

System

RABITTS

Completed
- Complete redesign of the 10 m system
- Obtained state-of-the-art BEGe detectors, combined with digitized based DAQ. Significant (>30%) energy resolution of the fission gamma-ray spectra

Performed
- FPY data for FPs with half-live of sub-second to a few minutes
- Developed analytical methods to process complex gamma-ray spectra

December 15, 2018

BEGe detectors, combined with digitized based DAQ. Significant (>30%) energy resolution of the fission gamma-ray spectra

BEGe

CeBr$_3$

Clove

10 m system

021829
RABBITS in Action
Preliminary 238U FPY Data at $E_n = 2.0$ MeV

- Observed over 300 γ-rays resulting from fission, representing over 87 fission products
- Preliminary FPY values for 39 fission products

Additional data
- 235U, 238U, 239Pu
- $E_n = 2.0, 4.5$ MeV

Constraining cumulative yields and moving towards independent yields
Fission Fragment Distribution*

Completed: 16 FPYs
(long irradiation)

Fission Product Distribution
Fission Product Distribution

Completed: 16 FPYs (long irradiation)

Obtained: 46 FPYs (JackRabbit)
Demonstrate: 87 FPYs (RABITT)

Obtained: 46 FPYs (JackRabbit)

Completed: 16 FPYs (long irradiation)
Broader Impact of the New Fission Product Yield Data

Fission Product Yields

Basic Physics

Application

Reactor neutrino study

Nuclear astrophysics and cosmochemistry

Radio-isotope production for medical applications

New FPY data base

Nuclear Forensics

Nuclear energy
Summary

- Constructed two (1 and 10 m) fast sample-transfer systems fully synchronized with the TUNL beam structure and DAQ
- Demonstrated unambiguous isotope identification (>87 fragments) using different cycle modes
- Consistent time-dependent FPY information from different symmetric and asymmetric modes of irradiation and counting

Short-lived fission products are in our reach!
Acknowledgements

J. BECKER
R. HENDERSON
A. RAMIREZ (PD)
N. SCHUNCK
J. SILANO
M. STOYER
A. TONCHEV
R. VOGT

T. BREDEWEG
M. CHADWICK
M. GOODEN
V. LINERO (GS)
T. KAWANO
D. VIEIRA
J. WILHEMY

L. BERNSTEIN
E. MATTHEWS (GS)

S. FINCH (PD)
I. TSORXE (GS)
F. KRISHI (PD)
C. HOWELL
W. TORNOW

Strong Partnerships with the TUNL/LBNL Stockpile Stewardship Academic Alliance Group