Verification and Testing of Covariance Libraries

Doro Wiarda and B.J. Marshall

WANDA
Washington, D.C.
March 4, 2020
Purpose

• Present current verification and testing of covariance libraries

• Within this context:
 – Verification refers to automatic checks or corrections performed in the processing codes
 – Testing refers to inspections and calculations performed after the data have been processed

• This is a very high-level overview
 – Some additional details are available in published papers and reports
Verification

• Within the AMPX system:
 – PUFF-IV processes covariance data into a COVERX-formatted library
 – COGNAC performs checks and corrections

• COGNAC checks:
 – All redundant covariance matrices are removed
 – Cross section data without covariance information are removed
 – Relative uncertainties larger than 1 are set to 1
 – Correlation values with absolute values larger than 1 are set to +1 or -1
 – Diagonal elements of the covariance matrix are extended if a higher energy group has uncertainty data and the lower energy groups do not
Testing (1)

- Visual inspection and comparison to prior evaluations

H-1 elastic scattering

Pu-239 \(\bar{\nu} \)
Testing (2)

- Data-induced uncertainty propagated to measured critical experiments

<table>
<thead>
<tr>
<th>Category</th>
<th>Avg C/E (CE_V7.1)</th>
<th>St. Dev. Of C/Es</th>
<th>Avg 1σ XS Unc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCALE 6.2</td>
</tr>
<tr>
<td>HMF</td>
<td>1.00014</td>
<td>477</td>
<td>1366</td>
</tr>
<tr>
<td>HST</td>
<td>0.99802</td>
<td>588</td>
<td>1050</td>
</tr>
<tr>
<td>IMF</td>
<td>1.00329</td>
<td>367</td>
<td>1528</td>
</tr>
<tr>
<td>LCT</td>
<td>0.99956</td>
<td>167</td>
<td>677</td>
</tr>
<tr>
<td>LST</td>
<td>0.99866</td>
<td>266</td>
<td>716</td>
</tr>
<tr>
<td>MCT</td>
<td>0.99649</td>
<td>337</td>
<td>633</td>
</tr>
<tr>
<td>PMF</td>
<td>1.00020</td>
<td>128</td>
<td>586</td>
</tr>
<tr>
<td>PST</td>
<td>1.00302</td>
<td>420</td>
<td>850</td>
</tr>
</tbody>
</table>
What’s missing?

• Improvements to verification
 – Does sampling from the covariances generate the mean values?
 – Detect and fix some data problems, e.g., matrices that are not positive definite

• Validation
 – Benchmark measurements of different systems allow comparison of calculated and measured results for mean values
 – Comparing variability of these results with covariance data prediction provides some insight, especially for major actinides
 – Substitution experiments and reactivity sensitivities may allow this approach to be expanded to other isotopes
References for further information

Questions?

This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy and by the US Nuclear Regulatory Commission (NRC); the presentation of the work is sponsored by the NRC.