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Filling In Inadequate Covariances

= Without a new full evaluation.

— Construct simple “ad hoc” covariances based on
 Differences between existing evaluation libraries.
« Comparison of mean values with spreads of experimental data

* Model-dependence between channels
- Clone covariance pattern in library for neighbors in this nuclear region.
- For example, elastic and inelastic are commonly anti-correlated.

— Use low-fidelity (“Low-Fi”) covariances described by Little et al (2008):
* Fills in gaps in ENDF/B-VII.O
— Use “Machine learning” like approaches to make up covariances

= Eventually: new evaluations
— Expensive without investments in automating the evaluation process.
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Little et al (2008):
M. T. Pigni et al (2009)

The Low-Fi Approach ( For Fast Region )
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“Making Up” Missing Covariances

= We want a more generic needed tool to generate sensible

artificial covariances for when no covariance data is available
— We also want to generate sensible substitute covariances when
application users have a reason to doubt available covariances.

= Abstractly, an evaluation with a covariance matrix represents a
way to sample a set of (nearly) continuous functions that are
distributed pointwise as a multivariate Gaussian

—i.e. A Gaussian Process
F(x) ~ GP(u(x),K(x',x))

* u(x) is the average or mean function
« K(x',x) is the covariance kernel of the functions
« u(x),K(x', x) are often parameterized
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Gaussian Processes to Make Up Covariances
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Purely data driven,
— No evaluation code is used, extremely fast to run
— Dangerous, no physics model backing up the covariance!

Still codifying how to pick kernels and avoiding pitfalls
— How to avoid collapsing length scales

Extend to coupled channels, angular distributions, etc.

Use Gaussian Process formalism to relate a
parameterized covariance kernel to an
evaluation + EXFOR data.

Provides alternative to ‘Low Fi’.
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Few cases studied thus far are competitive.
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Conclusions

= Modern nuclear data libraries have many inadequate or incorrect
covariances

— Limits uncertainty analysis of applications that consume nuclear data.

= Present solutions to supplement covariances
— Ad hoc mix and match from nearby evaluations.

— Low-fidelity “fill-in” covariances capture model variations
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= Potential future solutions

— Gaussian processes provide a formalism to
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— More general machine learning can replace 2901

concept of covariances completely.
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« But this would require “new” evaluations. E (Mev)
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