Office of Nuclear Energy
Nuclear Data Needs

David Henderson
Program Manager, Advanced Modeling and Simulation
U.S. Department of Energy
david.Henderson@nuclear.energy.gov

Workshop for Applied Nuclear Data Activities
March 3, 2020
Office of Nuclear Energy – Mission Pillars

• Advance nuclear power to meet the nation's energy, environmental, and national security needs.

• Resolve technical, cost, safety, security and regulatory issues through research, development and demonstration.
Nuclear Beyond Electricity – Advanced Reactors

NOW
Baseload Electricity Generation

FUTURE

Large Light Water Reactors
Small Modular Reactors
GEN IV Reactors
New Chemical Processes

Heat → e− → Electricity

Industrial Applications
Hydrogen Production
Clean Water
Hydrogen Production

Electricity
Examples of Different Advanced Reactor Industry Designs

Gas Reactors
- X-Energy Xe-100
- Framatome SC-HTGR

Fast Reactors
- GE Hitachi PRISM
- TerraPower TWR
- Advanced Reactor Concepts LLC ARC-100

Molten Salt Reactors
- Terrestrial Energy USA IMSR
- TerraPower MCFR
- Elysium USA MCSFR
- Kairos Power UCB PB-FHR
Nuclear Data Needs

- Driven by the anticipated materials and reactor flux spectrum comprising advanced nuclear reactor and fuels technologies
- Materials includes:
 - Coolants (e.g. FLiBe, molten chloride salts)
 - Moderators (e.g. graphite)
 - Control materials
 - Advanced fuels and clad (e.g. UN, SiC, etc.)

Reactor Coolants

<table>
<thead>
<tr>
<th>Spectrum →</th>
<th>Fast</th>
<th>Thermal</th>
<th>Fast</th>
<th>Thermal</th>
<th>Fast</th>
<th>Thermal</th>
<th>Fast</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic</td>
<td>Green</td>
<td></td>
<td>Green</td>
<td></td>
<td>Green</td>
<td></td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>Metallic</td>
<td>Green</td>
<td></td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>Molten Salt</td>
<td>Green</td>
<td></td>
<td></td>
<td>Green</td>
<td>Green</td>
<td></td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>TRISO</td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
<td>Green</td>
<td></td>
<td>Green</td>
<td></td>
</tr>
</tbody>
</table>

Chart not necessarily an exhaustive list
Nuclear Data Needs Priority

• Data needs priority should be driven by the requirements to accurately predict reactor behavior during steady-state and transient operation as well as postulated accident scenarios
 • Uncertainty quantification in the context of risk important to NRC licensing
 • Depends highly on the quality of covariance data for uncertainty propagation

• Priorities needs to be based on:
 • Identification of isotope data of significance as relates to the prediction of key parameters of interest
 • Parameters of interest include (to name a few):
 • Core reactivity
 • Decay heat
 • Power distribution
 • Feedback response due to material changes during anticipated and postulate transients
 • Source term for offsite dose

• For priority nuclear data, efforts need to generally focus on:
 • Missing data
 • Missing covariance data
 • Large covariance data