Overview of the NCSP Nuclear Data Program WANDA-2020 Workshop, March 3-6, 2020 George Washington University, Washington, DC Presented by: Michael L. Zerkle, Ph.D. Chairman, Nuclear Data Advisor Group Senior Advisor Naval Nuclear Laboratory ## Background / History - Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 93-2 and 97-2: - 93-2 (3/23/1993): Need for a general-purpose critical experiment capability that will ensure safety in handling and storage of fissionable material. - 97-2 (5/19/1997): Need for improved criticality safety practices and programs to alleviate potential adverse impacts on safety and productivity of DOE operations. - 97-2 encompassed ongoing DOE activities of 93-2 while broadening scope to address important cross-cutting safety activities needed to ensure NCS throughout the Complex. - DOE Implementation Plan for Board Recommendation 93-2 and 97-2 resulted in establishment of the US Nuclear Criticality Safety Program (NCSP) ## NCSP Organization and Overview ### Mission Provide sustainable expert leadership, direction and the technical infrastructure necessary to develop, maintain and disseminate the essential technical tools, training and data required to support safe, efficient fissionable material operations within the Department of Energy. ### Vision Continually improving, adaptable and transparent program that communicates and collaborates globally to incorporate technology, practices and programs to be responsive to the essential technical needs of those responsible for developing, implementing and maintaining nuclear criticality safety. ## NCSP Technical Program Elements - Analytical Methods (AM) 15% of budget (\$4.15M) - Maintain and improve the Production Codes and Methods for Criticality Safety Engineers (MCNP/SCALE, NJOY/AMPX) - Nuclear Data (ND) 16% of budget (\$4.50M) - Perform Measurements of Basic Nuclear (Neutron) Physics Cross-Sections and Generate New Evaluated Cross-Section Libraries and Covariance Data for Use in Production Criticality Safety Codes - Integral Experiments (IE) 52% of budget (\$14.88M) - Critical and Subcritical Experiments at the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) in Nevada and Sandia National Laboratory Pulse Reactor Facility — provides integral tests of codes and data - Information Preservation and Dissemination (IPD) 4% of budget (\$1.23M) - Protects Valuable Analyses and Information Related to Criticality Safety (includes ICSBEP) - Training and Education (TE) 6% of budget (\$1.64M) - Web-based training modules and 1- & 2-week Hands-On Criticality Safety courses for Criticality Safety Engineers, Line Management, and Oversight Personnel - Technical Support (TS) 8% of budget (\$2.06M) - Managerial and technical support **TS** – Technical Support MT – Management team **TMs** – Task managers CSSG - Criticality Safety Support Group **CSCT** – Criticality Safety Coordinating Team NDAG - Nuclear Data Advisory Group ## **Current NCSP Work Sites** # Nuclear Data Measurements & Evaluation Work for NCSP - Objective: Provide measured and evaluated thermal, resonance, unresolved resonance, and fast region cross section data to address the priority NCSP nuclear data needs - Vision: Addresses multiple Nuclear Data 5- and 10-year goals and attributes identified in the NCSP Vision - Final product: Rigorous ENDF/B evaluations produced from cross section measurements and analyses. - Measurement work effort focused on NCSP priorities by NCSP Nuclear Data Advisory Group (NDAG) - NCSP 5-year plan provides a listing of Nuclear Data measurement and evaluation priorities for the program | Nuclear Data Measurements | | | | | | | | |---|--|---|--|--|---|--|--| | Materials | Pre-FY2019 | FY2019 | FY2020 | FY2021 | FY2022 | FY2023 | Post-
FY2023 | | Cerium (142Ce) | (| | | | | | | | Basis | Neutron transmiss
(88,450 a/o) and ¹
as a catalyst or ad-
admixed material
sections is for pois
identified for the i-
required. | Ce (11.114 a/o)
ditive for chemical
in process stream
on credit in NCS | and can be found
all applications (e,
as, ¹⁴² Ce is also a
analyses. The ne- | d in chemical pro
g., glass polishing
stable fission pro
ed for improved | cessing streams
g powder). As a
sduct. The prima
cerium cross sec | because it is com
result, cerium ap
any interest for ce
tions has been sp | nmercially us
opears as an
erium cross
pecifically | | Chlorine (³⁵ Cl) | | | | | | | | | Basis | Measurement of the ³² Cl (n,p) cross section in the resonance range. Chlorine is present in fuel cycle facilities in Pu-
solutions, electrorefining processes, chloride saits, and as brine/drift in some repository environments. Improved ³³ Cl ₁ (n,p) cross sections needed for poison credit in these in these environments. A need for improved ³³ Cl cross section
has been specifically identified at LANs. and 4-12. | | | | | | | | Lanthanum (natLa) | | | | | | | | | | Measurement of neutron transmission and yield of ™La in the resonance range. Lanthanum is an element that is
predominately ™La [99:310 a/o] and a stable fission product. The primary NCS interest is for fission product credit
in the latest edition of the ENDF nuclear data library, the resonance analysis is based on parameters obtain with an
experimental set up which is known to have certain problems. Currently, ENDF/8-VIII evaluations for La do not have
adequate covariance data hased on experimental data, improved covariance data are needed to support
sensitivity/uncertainty analyses for fission product credit applications. Natural samples can be used. | | | | | | | | Basis | predominately ^{Lim}
in the latest editio
experimental set u
adequate covarian | La (99.910 a/o) an
of the ENDF number which is known
ap which is known
ace data based or | nd a stable fission
clear data library
n to have certain
experimental da | product. The pr
the resonance a
problems. Current
ta, improved con | imary NCS inter-
inalysis is based
http, ENDF/B-VIII
variance data are | est is for fission p
on parameters o
evaluations for i
needed to supp | btain with an | | Basis
Molybdenum (⁹⁵ Mo) | predominately ^{Lim}
in the latest editio
experimental set u
adequate covarian | La (99.910 a/o) an
of the ENDF number which is known
ap which is known
ace data based or | nd a stable fission
clear data library
n to have certain
experimental da | product. The pr
the resonance a
problems. Current
ta, improved con | imary NCS inter-
inalysis is based
http, ENDF/B-VIII
variance data are | est is for fission p
on parameters o
evaluations for i
needed to supp | product credit
btain with an
a do not hav | | | predominately ^{Lim}
in the latest editio
experimental set u
adequate covarian | La (99.910 a/o) ar
of the ENDF no
py which is know-
ice data based or
sinty analyses for
"Mo is a stable-
opes are current
poses are current
and space reacto-
ed storage, and of
dis Identified by I | nd a stable fission
clear data library
to have certain
experimental da
fission product of
managements of the
managements of the
managements of the
managements of the
processing plant
of a stable for the
way and instyle way and
way and way | product. The problems control to cont | imary NCS intermalysis is based
inty, ENDF/B-vili
variance data are.
Neutron transmi
soorbing nuclide
in fission products.
NCS is for fission
posits in French | est is for fission p
on parameters or
evaluations to
on needed to supp
es can be used. ssion measurem
in natural Molyb
s or in molybden
in product credit in | enduct credit
btain with an
a do not have
ort. ents previous
denum. um alloys in
for transport
the equipment | | Molybdenum (²⁵ Mo) | predominately ¹²⁸ In the latest editio experimental set u adequate covarian sensitivity/uncerts Measurement of n completed at RPL Molybdenum isort crasks, irradiated fi or example). Nee | La (99.910 a/o) ar
of the ENDF no
py which is know-
ice data based or
sinty analyses for
"Mo is a stable-
opes are current
poses are current
and space reacto-
ed storage, and of
dis Identified by I | nd a stable fission
clear data library
to have certain
experimental da
fission product of
managements of the
managements of the
managements of the
managements of the
processing plant
of a stable for the
way and instyle way and
way and way | product. The problems control to cont | imary NCS intermalysis is based
inty, ENDF/B-vili
variance data are.
Neutron transmi
soorbing nuclide
in fission products.
NCS is for fission
posits in French | est is for fission p
on parameters or
evaluations to
on needed to supp
es can be used. ssion measurem
in natural Molyb
s or in molybden
in product credit in | enduct credit
btain with ar
a do not hav
ort
ents previous
denum.
um alloys in
for transport
the equipment | # NCSP Nuclear Data Program ## NCSP Integral Experiments - NCSP integral measurements are performed at - Sandia National Laboratories (SNL) and - National Criticality Experiments Research Center (NCERC), currently operated by Los Alamos National Laboratory - NCERC is located at the Nevada National Security Site (NNSS) inside the Device Assembly Facility (DAF) - Types of experiments that can be performed - Subcritical - Rocky Flats shells, BeRP ball, Np-237 sphere, TACS shells, etc. - Critical/Delayed Supercritical - NCERC: Planet, Comet, Godiva IV, Flattop - Sandia: Sandia Pulse Reactor critical assembly (2 fuel types, currently) - Prompt Supercritical - NCERC: Godiva IV (< 300 deg. C pulse) #### **DAF/NCERC** #### **SNL/TA-V/SPR Facility** ## NCSP Critical Assemblies NCERC - TACS ### **Sandia National Laboratory** #### SNL - BUCCX - U(4.31)/Fission Product Experiments #### SNL – 7uPCX – U(6.9) UO₂ rods #### NCERC/DAF # NCSP Differential Experiments - NCSP differential measurements are performed at - JRC-Geel GELINA Facility (Geel, Belgium) - RPI LINAC (Troy, NY) - Types of experiments that are performed - Total cross section/Transmission measurements - Capture measurements RPI LINAC Rensselaer #### Photos referenced from: https://ec.europa.eu/jrc/en/research-facility/linear-electron-accelerator-facility http://www.linac.rpi.edu/public_html/accelerator.html # NCSP Nuclear Data Budget – by site and by year # NCSP Nuclear Data Budget – 2005-Present # Questions