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What is artificial intelligence (Al) and machine
learning (ML)?

* Al: methods of using computers to learn, reason, and carry out tasks that
are generally considered to require human intelligence

* Play games, identify objects in images, design experiments, etc.

* ML: methods of learning patterns in systems and making predictions
using data without explicit human direction
* Types of Learning:
e Supervised Learning
* Unsupervised Learning
* Reinforcement Learning

* Both of these definitions are very fluid:

* The boundaries of what is Al and ML in science and industry vary
* No concrete expert consensus on definition
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Supervised, Unsupervised and Reinforcement Learning

* Do you have a collection of data with labels/values and have
interest in predicting the label/value for data outside of this set?

* Yes: Supervised
* Predicting cross section as a function of energy
* Classifying an observed particle as a neutron or gamma in scintillator
* No: Unsupervised
* Grouping together time series values that look similar to find abnormal behavior
* Learning distribution of images to generate realistic synthetics
* No, but can take actions, collect data, and update based on feedback:
Reinforcement

e Learning to policy for playing Go or StarCraft by playing many games and learning
what works.
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Two Main Forms of Supervised Learning

* Regression:
* Predicting a continuous-valued output as a function of a set of input features
* One use is supervised learning to build emulators of expensive computer models
* Classification:
* Predicting qualitative class label as a function of a set of input features
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Common Supervised Learning Methods

* Deep Neural Networks
* More on the next slide

Original data Y

e Gaussian Processes

* Bayesian prior on a function space
* Defined through mean and covariance functions 1

* Function space defined by covariance function | o

e Can allow for infinite basis regression and quantification of
uncertainty in predictions

* Flexible and accurate for small to medium data problems
e Uncertainty most valuable for small data problems 21

e Random Forests o
* Ensemble method
* Flexible, fast, and accurate for medium to large data problems

Neural Networks Supervised Generative Reinforcement Deep Q Learning
Learning Modeling Learning Bayesian Optimization



What are Deep Neural Networks?

 Complex tool for (mostly) supervised
learning

HOW A DEEP NEURAL NETWORK SEES

e Great for:

* HIGH dimensional input spaces
* HUGE amounts of data

* |ldeally learning structure in the inputs that
can then be used to predict the output

* Hierarchical, automatic feature learning

 Stack of linear combinations of previous
layer, fed through non-linear transfer
function

* The structure of the layers is critical to
application
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Reinforcement Learning (RL)

 Utilizing ML to learn through

trial and error | pssess W
* RL agent is able to take actions, Current

receive feedback, and use ML to State Action
attempt to learn an optimal “ l t
policy for decision-making
.. . Upd_ate Obtain
* Current successes in iterative Policy Reward
games like Go and StarCraft Model

e But more broadly can think of
action as “propose experimental
design”, etc.
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Generative Modeling

 Method for generating ‘realistic’
synthetic data

* One approach is Generative
Adve rsa rl a I N etWO rks (GAN ) —) Discriminator Network ‘ | Predicted Labels
D-dimensional

1

e Build model to generate random
synthetic data

* Train a model to discriminate
between real and generated data m==)  Generator Network

* Iteratively improve generator to fool
discriminator and improve
discriminator

* Popular for synthetic image
generation, but new applications
are being aggressively investigated

noise vector

https://pathmind.com/images/wiki/gan_schema.png
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Transfer Learning

e Utilizing ML models trained on one
application or data set, either in part D D ﬁ H e
or in whole, for use in another task

* Current work largely focused on
fixing part of a neural network

trained on one large set of data j ﬂ et

* The used with a task for which less
data exists or the cost of training the
full network would be prohibitive

. . . : Frozen
* Takes advantage of intrinsic feature < 4
|ea rn i n g i n e a rly |aye rS https://paperswithcode.com/media/thumbnails/task/task-0000000118-7e49033f_1eFAOQSR.jpg
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ML Interpretability

* Understanding what drives the prediction/decisions made by ML
models is critical for building trust in their use and can lead to

insight for physics problems

* Underlying prediction/decision models is some quantitative
function

* Assessment of how dependent predictions are on the input features can
communicate importance

* Local and global importance, individualized or holistic

* Close relation to sensitivity analysis in applied math and statistics
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Neutron scattering cross section measurements for *Fe
A.P.D. Ramirez," J. R. Vanhoy,? S. . Hicks," M. T. McEllstrem,! E. E. Petrs,' S, Mukhopadhyay. T. D. Harrison.*
T.J. Howard," D. T. Jackson,’ P. D. Lenzen," T. D. Nguyen,® R. L. Pecha,’ B. G. Rice,” B. K. Thompson,” and S. W. Yates'
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it of Physics, U.S. Naval Academy, Annapolis, Maryland 21402,
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Elastic e from **Fe have for several
incident energies from 1.30t07.96 MeV at the University ufKemu:ky Accelerator Laboratory. Scattered neutrons
were detected using a CoD; liquid scintillation detector using pulse-shape discrimination and time-of-flight

techniques. The deduced cross sections have been compared with prevmuxly reported data, predictions from
evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical
model potentals using the TALYS and EMPIRE nuclear reaction codes. The coupled-channel calculations based
on the vibrational and soft-rotor models are found to describe the experimental (.19) and (n,n) eross sections.
well.

DOL: 10.1103/PhysRevC.95.064605

1. INTRODUCTION

- NEUTRON SCATTERING CROSS SECTION MEASUREMENTS ..
Nuclear data play an important role in modeling future

generation nuclear-energy systems [1-3]. Advanced high-
temperature nuclear reactors, for example, are being designed
for efficient energy generation while addressing safety, waste,
and proliferation concens Several e unde consiction for

in the burn-up of heavy element radioisotopes associated

TABLE L. Experimental and calculated angle-integrated cross
sections based on spherical (sph), vibrational (vib), and soft-rotor
(softerot) models for clastic, (n.m). (n.n2). and (n.n5) neutron
scattering on *'Fe. Cross sections are in units of b

it the Targe waste disposal pools from the operation of 5 Chamnel | Bt mms  mos | CCorot
conventional energy-producing reactors. Computer models V) (hiswork)  (ph) (b (softron)
and simulations are used to predict the performance of these
reactors under operating conditions, including the effects of 400 um) 24807 221 208 206
severe irradiation on structural properties. These predictions (nm) - 045520) 0348 041l 0413
require a vast knowledge of accurate and precise nuclear data, (mmy) - 0.1298) 0123 0123 0159
particularly cross sections from neutron-induced reactions. () OI75®) 0154 0152 0179
ron is one of the primary structural materials in many B SN R S 04

nuclear energy production systems, making Fe neutron scat-
tering cross sections important input for neutron transport
and energy absorption calculations. Elemental iron has four
naturally occuring stable isotopes, with 91.75% abundant
*Fe the most si
e ot rots sectons for neutro

() 01088) 0091 0092 0116
(ny) 00258) 0015 0115 0131
490 (g 229015 212 210 21
(m)  028437) 0199 0254 0238
() 00009) 0071 0071 0083

594 (n.n) 2.1321) 2.05 2.03 207
are dominated by elastic and melus(lc scattering processes. 020522 009 0082 0157
A number of studies of fast-neutron scattering from **Fe (nm)  0.0649) 0039 0038 0047
have been reported [4-12]. Despite these efforts, there are 696 (me)  1.94(13) 196 194 1.99
sill significant discrepancies among predictions from existing ey 043211 0098 0151 0.125
libraries, particularly for the (nm)  0.0305) 0023 002 0031

processes [13]. Such discrepancies can be atiributed to exper- 796 m)  19213) 185 183 187
imental data that have large or nonexistent uncertainties, lack () 0.126(10) 0.081 0.134 0.105

ofinformation on finite-size sample corrections, or inadequate
inelastic scattering data [14]. In addition, sensitivity studies on

important resctor quaniiie,such as eitcliy require there- relation reducing significantly the number of optical potential
duction of parameters [45]. Here, we adopted the parameters from
structural materials to meet the target accuracies for advanccd Ref. [43], which can be retrieved from the reference input
reactor designs [1-3]. Recent high-resolution measurements, parameters library (RIPL-3) [46] with index number 614.

The parameters from Ref. [43] are assumed 1o be valid for
iron isotopes with mass numbers between 54 and 58 and
incident neutron cnergies between 1 keV and 250 MeV.
These parameters were used as input to the nuclear reaction
program EMPIRE [43] to calculate neutron elastic and inelastic
2469-9985/2017/95(6)/064605(9) 06460 cross sections. The calculations include the cod

[47] which incorporates level-coupling schemes based on a
non-axial soft-rotor model to account for the siretching of soft
nuclei by rotations.

e comparison between our data and the dispersive
coupled-channel calculation based on the soft-rotor model
from Ref. [43] at E, = 6.96 and 7.96 MeV are shown in Fig. 6.
A tabulation of the calculated cross sections from different
model caleulations is given in Table I11. Only the data for £, >
4 MeV are presented since these cross sections are shown to

i (DF

“ap ramirez@uky.edu

'y ly
evaluations. All the models were able to describe the elastic

ross sections well within 10% for E,, > 4.90 MeV. The (n.n1)
cross sections obtained from the coupled-channel formalism

PHYSICAL REVIEW C 95, 064605 (2017)

using the optical potential parameters from Ref. [43] better
than i del caleul

although a noticeable underestimation is found for neutron
energies 4.90 and 5.94 MeV. For the (2,12) and (n,13) cross
sections, most of the theoretical values are found to be
smaller than the experimental ones. The (.n2) and (2,n3)
cross sections from TALYS vibrational and spherical model
calculations are almost identical as both are calculated using

VI. CONCLUSION

The angular distributions for neutron scattering from *°Fe
were measured at 15 incident neutron energies from 1.30 to
7.96 MeV. The neutron scattering cross sections deduced from
these data have been compared with values from evaluation
databases. Reasonable agreement has been observed for data
above 3.5 MeV, although our data tend to be closer to the cross
sections from the JEFF library. Our angle-integrated (n1;)
cross sections, representing the dominant inelastic channel for
neutron energies of 5.94 and 7.96 MeV, are slightly higher
than those in the evaluations. This result does not support
the assertion of Wenner e al. [35] that the total inelastic
cross section from the ENDF database should be lower by at
least 20%.

We have also compared our experimental results with
predictions from theoretical calculations using TALYS with
default parameters and coupled-channel calculations based on
the vibrational model, as well as the EMPIRE nuclear reaction

‘model with optical
parameters from Ref. [43]. In general, the calculations were
able to describe the present differential elastic scattering
cross sections well, particularly for neutron energies above
4.5 MeV. When the TALYS default were used to calculate
the (n.n1) cross sections through the DWBA method, the
dict data

for E, > 3.5 MeV. The TALYS predictions can be improved by
employing the coupled-channel vibrational model but with
4 64% reduction in the imaginary surface potential depth.
Similarly, the EMPIRE calculations based on the soft-rotor
model were also found to describe the inelastic cross sections
well.
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FIG. 1. Typical TOF spectra containing events from the detection

of both neutrons and y rays (red), neutrons only after pulse-shape
discrimination (green), and also neutrons only after background
subtraction (blue). In the top spectrum, peaks in the middle correspond
to events from scattered neutrons while the largest peak on the right
corresponds to events from the detection of prompt y rays.
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Nuclear data application area

* Incomplete or incorrect data can lead to very precise and very inaccurate
predictions

¥FiveThirtyEight

2016 Election Forecast

Who will win the presidency?

Chance of winning

Hillary Clinton Donald Trump

71.4% 28.6"
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Nuclear data application area

* Machine learning is dependent on standardized data that is
guality-verified and well-characterized

“EXFOR is a compilation of the author's original published experimental
data.

While the format allows the inclusion of data renormalized to up-to-date
standard values... this task is normally left to data evaluators...”

— Principles of EXFOR

Experimen Evaluations L .
Xperime ts . Validation Applications
Compilations Processing




Future

* A new database is needed, parallel to (or included within) EXFOR
for vetted, standardized, and possibly adjusted data sets

» Standardization is especially important,

for both formats and uncertainties
Authors Evaluators,

Qualified Data Users = . Thjs work is already done by evaluators

for evaluations and should be done for
current ML projects using EXFOR
Publication EXFOR Vetted Database
* Natural language processing and currently
available ML data verification software

can be utilized for large scale checks
EXFOR Compilers
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== STANFORD LS (1982)
Daresbury LS (1991)
NSLS-I (1994)

== LURE LS (1997)

== THAILAND LS (2011)
DIAMOND LS (2016)

Nuclear data application area

NSLS-II ISS beamline (2017)
== NSLS-II ISS beamline (2019)

 Diverse quality in experiments and simulations

NSLS-1l QAS beamline (2019)
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Nuclear data application area

STANFORD LS (1982)
Daresbury LS (1991)
NSLS-I (1994)

LURE LS (1997)
THAILAND LS (2011)
DIAMOND LS (2016)

* Adopted non-parametric transformation and alignments
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Future
* Batch effect mitigation or removal tools to be used by Al/ML
* Such tools / algorithms could be Al/ML methods
* Developed such algorithms for material science and bio-medical domain

* A fully automated NLP pipeline with reviewer user interface

-~ ~  NLP can not be 100% accuracy and
- —— || Extracted Table, requires human validation

e — NSR metadata el . . .

— _ * Intuitive user interface is required

— = el for expert validation

- — ataset entry . . .

— = D Automation can significantly reduce

= = e — manual data extraction burden
e  Table and Figure extraction from PDF

Reviewer User Interface
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Nuclear data application area

* Fast track selection or event classification in “big data” detectors

Overview
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What has been done

 Convolutional Neural Networks

Precision Recall

Experiment Precision Recall

224 x 224 x3 224 x 224 x 64 -
Experimental —

. 0.96 0.90 0.93 0.97 0.93 0.95
Experimental
e L ,_L
Simulated = 1.00 1.00 1.00
. Simulated
e R ——
. . .
Simles 0.90 0.60 0.72

Experimental
@ convolution+ReL.U
’LI'| max pooling
! fully connected+RelLU . - > & ‘\'

1 softmax .,"@
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Future

e Current work:

e cycleGAN
* Pix2pix

e Can we improve classification using
GAN data?

* Can we reproduce these results in 3D
to better simulate realistic data?

N £ ..}g“ N’
SR IS
S K
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Sgn (Odd Z)

What type of problem can this solve?

— Robust extrapolation of nuclear observables

—+— FRDM-2012

20 28 50 82 T ot averge
e ex —— posterior average
¥ observed s | L0 0.0 02 04 06 08 10
~— FRIB reach -
! [L. N. et al, Phys. Rev. Lett. 122 (2019)]
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Probability of existence of neutron-rich nuclei
[L. N. et al, submitted (2020)] Evaluation of systematic errors
[L. N. et al, Phys. Rev. C 98 (2018)]
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How does the method work?

* Train Bayesian Gaussian Processes / Neural Network emulators on residuals
5(Z,N)=S3P(Z,N) — S8 (Z N, 9) —— S$4Z,N)=Si(Z, N, ﬁ)+5em(z N)

GP outperforms NN 2) 04:|\4 | $ <& 5.
ol A e (e |a
* Sample refined predictions from posterior distributions . .. &%
p(Bly) xp(y|O)m (0) ——  p(»Iy) = [ p("ly, ©)p(6ly)do I ;.,J.\L, Ll o
o @)@ N
* Combine models with Bayesian Model Averaging (BMA) o ”/\* Y
M, p(y|Mp)m (M) o & |
p(Mily) = "V.SL_% L L LA
>y P(yIMe)T(My) e

wiMeV) nM¢\| 0r Py

|L. N. et al, Phys. Rev. C 101 (2020)]
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’0

What is needed to use these tools? ..

S 60 &
* A set of experimental data e
e Divided into training and testing set o]
e Bayesian models are meaningful even with little data e
Neutron Number

[L. N. et al, Phys. Rev. C 98 (2018)]

e A set of theoretical calculations for models of interest

* Computing cores for Monte-Carlo simulations
—> conditional distributions of GP on large dataset require O(n) matrix inversions
- ~ 50 cores x 1 week per model
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What type of problems can this solve? — DNN and GB

* MLPs compute the gradient with respect to every model parameter
(coefficients) and it is used to perform a Gradient Descent step.

 GBM trains many weak learners to create a strong learner (ensemble method).

Outputs
*, Output
,ilayer
* Input
! layer
Input neuron
(passthrough) X X,
Inputs

Aurelien Geron, 2019
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How does this method work?
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What is needed to use these tools? — Representative Datal

* Measurements of other isotopes in the
same reaction channel and energy range
enable a GBM ML model to make better

predictions than traditional evaluation

tools.

Cross Section Inference MT_103

Cross Section (b)

EXFOR

« New Measurments
10 : ML
ML

Log10 Energy(MeV)

GBM >

Supervised
Learning

0.18

Cross Section Inference MT_103

016

0.14

=
Cross Section (b)
© o ©
o - —
4] o N

©
o
o

0.04

0.02

MEW DATA: ENDF wvs EXFOR:
The MSE is: ©.828892849%

ik NEW DATA: X5 Tree vs EXFOR:
New Measurments ,
The MSE is: ©.9088641224583
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’ *
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Al/ML for Nuclear Data
Building robust science-based evaluations and establishing
guidance for next-generation reaction theories
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Nuclear data application area
Evaluated and predicted cross sections are critical to national security,

energy and astrophysics applications ." )
* Reaction data must be evaluated for use in applications =

ﬂ ‘-Iv:' P Fission
¢
* Uses diverse mix of structure & reaction models n_Neﬁecﬁ.ve \e '% .‘* l

Compound
Nucleus

e Central tool: Extended Hauser-Feshbach reaction framework i

interaction

 Challenges for reaction evaluations (Optical Model) .

Y emission

M,

* Correlated reaction channels
* Correlations across isotopes Pre-equilibrium
* No optimal combination of models e

T T L= 1\ T T Ty
* No model uncertainties 2380J4n ] M
* Need to sample models and large parameter spaces % o n emission {5 of_
+ Data do not give unique constraints to disentangle inputs ¢ | S
" — 3 ol 18 ol pmen
 Additional challenges for predictions 310 AP ERER LS
) <] [ 4 Matsuyama, 1990 Rl /’ ] . Edm:r:}ggl
* Lack of constraints © foammWh, N\ L
* Extrapolation of models NI e R
0 4 8 12 16 20 102 10
Emission Neutron Energy (MeV)
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What has been done
Significant progress in recent years, but work remains to be done

* Significant progress in improving reaction framework

* Nuclear structure: phenomenological models complemented
by microscopic theories (e.g. E1 strength, level densities)

* Reaction mechanisms are being revisited (e.g. pre-
equilibrium)

* Limited use of Al/ML tools so far

Phenomenological E1 IySF

102 Capote (2009) F

* Significant progress in quantifying uncertainties . - -
* From fitting visually to minimizing %2 to Bayesian approaches 5 (MeV)
* Importance of covariances is recognized Microscopic calculation (CRPA)
* Use of Al/ML techniques just starting S [ A R R

25

* Predictions - extrapolations are problematic 20

* Models are extrapolated to regions where they have not 15
been validated

* ML technigues useful for improving microscopic theories
(e.g. mass models)
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Future

Vision: Building robust science-based evaluations and establishing
guidance for next-generation reaction theories

* Develop evaluation tools to handle complex connections
between models and their relations to observables
» Allow for optimization across multiple reaction channels and sets of
isotopes
» Utilize direct and indirect data, plus theoretical constraints o
* Implement modular structure to allow for replacing outdated nuclear
models

Reaction calculations for astrophysics require extrapolations

Stable nuclei

50

* Provide guidance to nuclear theory
* Critically examine physics models and identify shortcomings
e Assign uncertainties to models

Number of Protons

r-process
p-process

neutron star processes
supernova cores

Nuclei known
to exist

S-process

* |dentify experiments to most effectively constrain theory I =

Experiments Evaluations _ N
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Nuclear data application area

* Nuclear data validation Prompt Fiss. Neutr. Spectr.
_relies.on expertjudgment. to o —] o Promct Newtr. Mulfiofic
identify where are errorsin _ = | v. Frompt Neutr. Multiplicity
nuclear data responsible for 2 /" | g~ W TEET [ e
a difference in simulated V< =L o oplngs £ 2
versus experimental values of ' == N\ | " BN
validation measurements. R L o Do 11, R R
» 1000s of nuclear data are o=l ey T
used to simulate 1(!) s gy | %k Fission Cross-section

validation experimental

value. A human brain cannot  Simulating the I f
keep track of all these inter- criticality of P
dependencies Jezebel takes 100s

of nuclear data
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What has been done

Random forests were used successfully to augment expert knowledge in pin-
pointing errors in nuclear data and benchmark experiments leading to bias in
simulating criticality benchmarks; E.g.: ML found 1°F(n,inl) issue missed by experts

19F(n,inl)

ENDF/B-VIII.0
JENDL-4.0
Broder 1969

1 1 1 1 1 1
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é n
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Future

These ML techniques can be used for and enhance already now nuclear
data validation. For more effective future use, one needs to address the
major obstacle that several combinations of nuclear data lead to the
same simulated criticality value -> no unique answer which nuclear data

should be improved. We can resolve this in the future by:
e Using importance assessment metrics better suited for correlated input,

* Using comprehensive set of validation experiments: requires sensitivity
tools to link nuclear data and simulations, benchmark quality validation
experiments beyond criticality and ML algorithms able to handle those.
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Nuclear data application area
* Develop and refine advanced tools and a build a framework that
enables optimized design of new benchmark experiments for
validation of predictive simulations.
 What is the “ideal critical experiment” to support a given application?

Number of
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What has been done

* Critical experiment design history:
* Initially only expert-judgement was used (1940s).

e Simulations (largely Monte Carlo) were used to aid in experiment design
(1950s-2000s)

e Cross-section sensitivities introduced in SCALE and MCNP (2000s)

* Now Al/ML is being utilized in critical experiment design:
e LLNL OPTIMUS

95%

* LANL Bayesian optimization !

Width
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Future

 EUCLID (Experiments Underpinned by Computational Learning for
Improvements in nuclear Data) aims to utilize advancements from
ARCHIMEDES and the Nuclear Data Machine Learning projects.

* Optimization includes several parameters (not just c,).

* Focus is not a single experiment/measurement but how to combine
multiple configurations and methods to maximize nuclear data

Spherical and cylindrical geometries. SC ST
B

n= (g,ml, dl’ m,, dz, ...) - 577 B — Cr k
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What type of problem can this solve?

" Framework: nuclear density functional theory (DFT) for fission

" Ingredients needed to compute fission fragment distributions
» Potential energy surfaces (PES) in some collective space
* Time-dependent dynamics (classical or quantum)

" Depend on energy density functional — calibrated on experimental data

" Propagate uncertainties from energy functional to fission fragment
distributions

 Start with building emulator of 1D fission paths from ground-state to scission
 Build posterior by conditioning on values of “experimental” barriers
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Deformation Energy [MeV]

How does the method work?

Perform DFT calculations of
fission path from ground-state

to scission
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What is needed to use these tools? .

=1 Original
= Supervised learning for theoretical models

e Data is set of theoretical calculations

 Computationally expensive (hours on
supercomputers)

= Outlook

* Expand concept to values of mean field on

spatial lattice

* High-precision irrelevant: use emulator as
starting point to speed up calculations of large
potential energy surfaces
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What type of problem can this solve?

Mixture Density Network (MDN)
Can describe probabilistic data/observables

Used in cases where t

is not one-to-one (e.g.

input can have multip

. . . . . . 220
synthesizing speech, financial risk analysis, etc.) ;
%180
i < 160/
We have been exploring the MDN to emulate - . A
fission observables (fission yields) 2ok

MDN prediction

ne input to output mapping

Py

wr
.Av-"?f‘"dgd’

systems where a single

e outputs — applications to

80 100 120 140 160 180

C.M. Bishop, Neural Computing Research Group Report NCRG/94/004 (1994)
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How does the method work?
f(X) — alN(:ulvo-l) + O‘2N(:u270-2) T T OénN(,LLn,Un)

Standard neural : . : :
network In the Mixture Density Network, neural network learns the Gaussian variables
instead of the mapping between x and y directly

e A e s e e . e e e s B
== = Hambsch 1997 |

Input = output
252Cf($f) == = Gook 2014

A wp © A=108 =" fommn i
\ i I Training Set 1
R : oan | = MDN
= |
£20f

60 62 64 66 68
Y(A=108) [x103]

Output level

Input level
I hidden
level /
k" hidden
level

Figure: https://hackernoon.com/artificial-neural-network-ag843ff870338
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What is needed to use these tools?

e Data are needed with uncertainties

* Any type of data where the underlying distribution is believed to be or can
be described as a probability distribution (e.g. experimental data where the
errors are taken to be Gaussian)

* Multi-dimensional input and output can be handled
* Correlations between data points and uncertainties can be included

* Discrepant data sets do not have to be removed
* Noisy data can be included in the training

Neural Networks > Supervised Generative Reinforcement Deep Q Learning
Learning Modeling Learning Bayesian Optimization
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Additional Al/ML Perspectives for Nuclear Data

Optimization algorithms for Al/ML

 Classical algorithms, e.g., stochastic gradient descent, Bayesian optimization,
evolution strategy, trust region methods, show weakness in training complex

Al/ML models.

» SGD does not work in large-batch training due to the loss of Stochasicity.

» Reinforcement learning cannot use automatic differentiation (AD), so gradient-free (black-
box) optimization algorithms are needed.

» Besides AD, most algorithms do not work well in very high-dimensional spaces.

 Heuristics used in ML/Al training significantly prohibits reproducibility, such
that a lot of “new” ML/AI models/methods can not be verified.



Additional Al/ML Perspectives for Nuclear Data

Optimization algorithms for Al/ML
* Training ML/Al with physical constraints

» Most existing ML/Al training algorithms are non-constraint optimization, but ML/AI
problems related to nuclear data may require either hard or soft constraints.

» Soft constraints could be handled by adding regularization terms to the loss function, but
hard constraints are generally difficult to handle.

* Generalization gap

» Since the loss function only involves training data, the global optimum of the loss function
may not be a good choice for your ML/Al model.

» If the training data can fully represent the entire population, global optimum is the best.
Otherwise, a local minimum with small curvature is preferred.



Additional Al/ML Perspectives for Nuclear Data

Surrogate modeling
e Dimensionality reduction (DR) in both input and output spaces.

» Nuclear simulators are usually very time-consuming, so it is unaffordable to generate large
amount of training data.

» Reducing the input and output dimensions can significantly improve the accuracy of
surrogates using limited amount of data.

» Linear DR methods: active subspaces, inverse regression, Nonlinear DR: reversible NNs
* Multi-fidelity surrogates

» Use low-fidelity nuclear simulators to generate a lot of training data and use high-fidelity
simulators to improve the accuracy in predictions.



Additional Al/ML Perspectives for Nuclear Data

Stability and Robustness of Al/ML prediction

* Stability means the sensitivity of ML model output with respect to small
perturbations of inputs

» Deep NNs may have stability issue when viewing them as dynamical systems, i.e. ODEs
» Possible strategies include implicit neural networks, reversible networks
* Robustness means the ML can alleviate the influence of adversarial attacks

» Intentionally or non-intentionally generated or crafted data to hurt the predictability of
deep neural networks, e.g., mis-classification.
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xperiments valuations

Compilations Processing

Validation Applications

Needed Groundwork

 What common community tools are
needed?

* Modernizing/documenting tools
* Improving ease of access
e TALYS is a great example.

* Modernizing and open sourcing
common codes

* Cleaning up experimental data bases
* EXFOR

Pitfalls to be avoided

* Need to enforce reproducibility
through peer review

* ML models represented and
distributed in a standard format.
* Want to augment missing physics

* Favor better physics models over more
complex ML.



Experiments Evaluations
Compilations Processing

Validation Applications

e Can we mitigate human error in
compilation?

Yoo
- 4 )
* Can we use ML to identify/quantify — | euscesbe
missing systematic errors? — | =
* Can we “learn” how to correct them? == - D
== G
\_ Next Paper . Submitto DB )

Reviewer User Interface

* Using ML to prioritize new measurements

 Validating old data
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Validation Applications

* Emulation of complex and expensive

40 32

model codes | Original :
* Learning model defects .
e Correcting them? p

* How can we enhance evaluations with : o
more fundamental but less precise ’

models? : R

* Can reinforcement learning pick better a L E— :
sets of models? ” :

* Can we “learn” the intuition behind past . 3
evaluations : 3

e Codification of senior evaluator intuition. .

* Can we apply these ideas/tools to f‘ 3

structure evaluations

N. Schunk
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* How can we gauge the correctness of
evaluations and models?

Neudecker
* Does “correctness” have context? ' '
 What about where there is no data? A "F (n, inl)
* Very unstable systems 5
* r-process ; / ]
* Can we optimize new experiments to L S :
maximize new information gained? " ¢feroder 60
e Can we automatic the consistency o .n;de;tELer;yiMew :

checking between models and measure
data?
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