Advanced Optical Detectors: Water-based Liquid Scintillator

WANDA 2020

Christopher Grant

Water-based Liquid Scintillator (WbLS)

Small nano-droplets of Liquid Scintillator (**solvent** + **fluor**) are encapsulated inside *micelles* formed by chemical surfactant.

Performance depends on the relative fractions of different components

Tune your detector performance as you wish!

For details see M. Yeh, et al. NIM A 660 (2011) 51-56

March 3, 2020

A Hybrid Optical Detector for Particle Physics?

Advantages of a Cherenkov Detector:

- High transparency \rightarrow light propagates long distances
- Particle ID with ring imaging
- Directionality
- Potential for metal-loading (capture targets)

Advantages of a Scintillator Detector:

- High light yield
- Good energy and vertex resolution
- Low-energy threshold (sub-Cherenkov detection of particles)
- Particle ID with pulse-shape discrimination

Water-based liquid scintillator (WbLS) provides everything in one detector!

WbLS Performance in Particle Detectors

Events

60

20

-2

Optical data is critical for understanding detector performance

- Scintillation wavelength emission profile
- Timing profile (scintillation rise + decay times)
- Optical attenuation (absorption + scattering) and light yield
- Cherenkov/Scintillation separation (with respect to timing resolution and % concentration of scintillator in water)
- Optical parameter stability over time

Cherenkov light *arrives earlier* than scintillation light

WANDA 2020

Quenching in WbLS

Quenching data is important for understanding non-linear energy response

Light yield from ionizing particle energy deposits in liquid scintillators is **non-linear due to non-radiative energy transfer**. This effect **depends on particle types and their energies**.

Semi-empirical Birks' Law:

True Energy [MeV]

Quenching Measurements in WbLS

Quenching data is needed for different particle types ($p, \alpha, e^-, ...$)

- We need more data for different particles over a broad range of energies to understand non-linear energy response
- Measurements could use particle accelerators (primary or secondary beams), for example:
 - LBNL 88-inch Cyclotron
 - UC Davis Crocker Cyclotron
 - ORNL Spallation Neutron Source

• ...

Proton quenching in WbLS measured at BNL

L. J. Bignell et al 2015 *JINST* **10** P12009

	Material	Light Yield (photons/MeV)	Quenching Parameter (mm/MeV)
0.4%	WbLS-1	19.9 ± 1.1 (stat.) ± 2.0 (sys.)	0.70 ± 0.12 (stat.) ± 0.07 (sys.)
1%	WbLS-2	108.9 ± 0.8 (stat.) ± 10.9 (sys.)	0.44 ± 0.01 (stat.) ± 0.04 (sys.)
	LS	9156 ± 42 (stat.) ± 916 (sys.)	0.07 ± 0.01 (stat.) ± 0.01 (sys.)

Summary

- WbLS is an advanced detector medium could revolutionize particle detection in research, industry, and medicine
- In order to understand how this medium performs, we need detailed optics characterization and measurements of ionization quenching for differing particle types and energies

Planned WbLS Deployments... ~ 25 kiloton 26 tons ~1 kiloton

 ~ 100 kiloton

THEIA: An Advanced Optical Neutrino Detector arXiv:1911.03501

annie

WANDA 2020