Nuclear Data Needs for Interpreting Reactor Antineutrino Signals

March 3, 2020

Bryce Littlejohn
Illinois Institute of Technology

Differing Yields = Differing Neutrinos

- Semi-unique yields generate distinct neutrino fluxes and energy profiles for each fission isotope.
- Neutrinos easily escape the vessel and present a promising target for remote monitoring.
 - Reactor fission rates (i.e: thermal power)
 - Reactor core content (i.e: how much plutonium)

Neutrino-Based Monitoring Validations

- Existing experiments have validated feasibility of this approach.
 - PROSPECT: demonstrated percent-level daily reactor power load following with an on-surface 4 ton scintillator detector PROSPECT, PRL 121 (2018)

Daya Bay: directly measured changes in neutrino flux/energy associated with fuel burn-up Daya Bay, PRL 123 (2019); PRL 118 (2017)

Interpreting Data: Current Limitations

- Better understanding of isotopic neutrino yields/spectra is required to achieve useful, reliable monitoring capabilities.
 - Models of antineutrino production based on standard nuclear databases fail to reproduce measured neutrino rates and energy spectra
 - Direct neutrino-based calibration of per-isotope fluxes and spectra is limited in precision by the lack of diversity in existing high-stats neutrino datasets

Future Measurements: Neutrinos

- A broad range of measurements can help address these issues.
- Neutrino side:
 - Higher-statistics datasets from reactors of more widely varying fuel content
 - **HEU** and single-core full-cycle **LEU** measurements with existing, future detectors
 - Detailed study of hypothetical measurements at MOX reactors
 - Self-consistent comparisons between existing <u>HEU</u> and <u>LEU</u> datasets

Future Measurements: Nuclear Physics

- A broad range of measurements can help address these issues.
- Nuclear physics measurements side:
 - Improved fission yield, beta feeding, and beta shape factor measurements
 - Fission delayed gamma spectrum measurements
 - Improved description of nuclear data uncertainties

Synergies With Nuclear Data

- Matching increasingly precise neutrino data to improved reactor models can be an iterative, mutually beneficial process
 - Better modeling and nuclear data enables precise neutrino monitoring, better understanding of reactor neutrino properties
 - Better neutrino data enables new probes of weak points in existing nuclear datasets, robust assessment of new nuclear data measurements.

THANKS!

Backups

Predicting $S_i(E)$, Neutrinos Per Fission

• Two main methods:

- Ab Initio approach:
 - Calculate spectrum branch-by-branch w/ databases: fission yields, decay schemes, ...
 - Problem: rare isotopes / beta branches: missing, possibly incorrect info...
- Conversion approach
 - Measure beta spectra directly
 - Convert to \overline{V}_e using 'virtual beta branches'
 - Problem: 'Virtual' spectra not well-defined: what forbiddenness, charge, etc. should they have?
 - 'Preferred' method: smaller error bars

