An overview of facilities for measuring prompt neutron-induced gamma-rays

(Or: How to make frenemies and confuse lots of people)

Darren L. Bleuel
Lawrence Livermore National Laboratory

Workshop for Applied Nuclear Data Activities
March 4, 2020
A comparison of (some) neutron sources around the world (a.k.a., the too-busy slide that gets me hate mail)

Flux (n/cm²/s)

- **10⁶**
- **10⁵**
- **10⁴**
- **10³**
- **10²**

Energy (MeV)

- **0.1**
- **1**
- **10**
- **100**
- **1000**

Sources

- **WNR (30 deg)**
- **RPI**
- **nELBE**
- **Kentucky (2m)**
- **LBNL TTDB (5m)**
- **LBNL TTDB Faux DT**
- **Gelina (90 deg @ 30m)**
- **Ohio U. 7MeV ¹³C(d,n)**
- **TUNL (2.875m)**
- **TUNL (18.2 MeV DD)**

FLUX (n/cm²/s)

- **1**
- **10**
- **10²**
- **10³**
- **10⁴**
- **10⁵**
- **10⁶**
- **10⁷**

Sources (bar graph)

- **WNR (15m)**
- **RPI (30m)**
- **nELBE (6.18m)**
- **Kentucky (2m)**
- **LBNL TTDB (5m)**
- **LBNL TTDB Faux DT**
- **Gelina (30m)**
- **Ohio U. (5m)**
- **TUNL (2.875m)**
- **TUNL (18.2 MeV DD)**
LANSCE (Los Alamos National Lab)
(Spallation neutron source)

Notable capabilities:
- Many beam lines
- GENESIS partner (Chi-nu)
- Reaction/fission studies
- Activation/decay
- Neutron imaging
- Isotope production
- …

Neutron Source(s): 800 MeV Spallation

<table>
<thead>
<tr>
<th>Beam spectrum:</th>
<th>(up to 800 MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target distances</td>
<td>8m - 90m</td>
</tr>
<tr>
<td>n Flux (n/cm²/s)</td>
<td>$1 \times 10^{6-9} + (?)$</td>
</tr>
<tr>
<td>γ-ray detectors</td>
<td>DANCE, HPGe…</td>
</tr>
</tbody>
</table>
Gaerttner Linear Accelerator Laboratory (RPI) (Electron LINAC, photoneutron source)

Notable capabilities:
- Multiple stations
- $e^- \rightarrow Ta \rightarrow \text{brem} \rightarrow (\gamma,n)$
- Nuclear data
- Rad damage
- Radioisotopes
- LSDS

Neutron Source(s): Photonuclear

Beam current: 8μA (60 MeV e’s)

Target distances 15m - 250m

n Flux (n/cm2/s) 3.5×10^4 (30m)

γ-ray detectors NaI, BaF$_3$, C$_6$D$_6$
nELBE (Helmholtz-Zentrum Dresden-Rossendorf) (Electron LINAC, photonuclear source)

Notable capabilities:
- $e^- \rightarrow Pb_{liq} \rightarrow \text{brem} \rightarrow (\gamma,n)$
- Very short pulse (5ps!)
- Close match to fission spectrum
- Fission, capture, inelastic studies
- $^{56}\text{Fe}(n,n'\gamma)$ including $\gamma(\Omega)$

Neutron Source(s):
- Photonuclear

<table>
<thead>
<tr>
<th>Beam current:</th>
<th>1 mA (40 MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target distances</td>
<td>6.18m</td>
</tr>
<tr>
<td>n Flux $(n/cm^2/s)$</td>
<td>4×10^4 (6.18m)</td>
</tr>
<tr>
<td>γ-ray detectors</td>
<td>HPGe, LaBr$_3$, BaF$_2$</td>
</tr>
</tbody>
</table>
UKAL – University of Kentucky Accelerator Laboratory (7 MV Van de Graaff Accelerator)

Notable capabilities:
- Monoenergetic beams (0.1-23 MeV)
- Spectroscopy
- Scattering studies
- γ-ray production cross sections ($0\nu\beta\beta$)

Neutron Source(s): D(d,n), T(p,n)

Beam current: 1-2 μA (<7 MeV)

Target distances: 4cm - 2m

n Flux (n/cm2/s): 2×10^3 (2m)

γ-ray detectors: HPGe, BGO

Notable capabilities:

- Monoenergetic n (25 keV - 20.5 MeV)
- Low-background experimental area
- Fission yields (Y_{Nb} vs. E_n)
- Cross sections
- Activation/decay ($^{169}Tm(n,3n)$)
- Rabbit system (~seconds)

Neutron Source(s): DD, DT, pT, $^7Li(p,n)$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam current</td>
<td>1-2 μA</td>
</tr>
<tr>
<td>Target distances</td>
<td>2.15m, 4.27m…</td>
</tr>
<tr>
<td>n Flux (n/cm2/s)</td>
<td>2x104 (2.875m)</td>
</tr>
<tr>
<td>γ-ray detectors</td>
<td>BEGe, HPGe, NaI, CeBr$_3$, LaBr$_3$</td>
</tr>
</tbody>
</table>

Bhatia et. al., NIM A 757 (2014) 7–19
Edwards Accelerator Laboratory – Ohio University (4.5 MV Tandem accelerator)

Notable capabilities:
- Swinger arm (0°-155°)
- Beam pulser/buncher (tunable pulse frequency—eliminates wrap-around)
- Long, collimated time-of-flight cave
- Solid/Gas targets
- Monoenergetic+

<table>
<thead>
<tr>
<th>Neutron Source(s):</th>
<th>DD, DT, pT, X(d,n)…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam current:</td>
<td>5-10 µA</td>
</tr>
<tr>
<td>Target distances</td>
<td>4-30m</td>
</tr>
<tr>
<td>n Flux (n/cm²/s)</td>
<td>1x10⁵ (5 m)</td>
</tr>
<tr>
<td>γ-ray detectors</td>
<td>HPGe, NaI, BGO, LaBr₃</td>
</tr>
</tbody>
</table>

Meisel et. al., Physics Procedia 90, 448-454 (2017)
Gelina – Geel Electron LINear Accelerator (70-140 MeV electron linac, photonuclear/fission)

Notable capabilities:

- $e^{-} \rightarrow U \rightarrow \text{brem} \rightarrow (\gamma, n)$
- Water tanks (above/below) to produce low-E neutrons
- Eighteen flight paths
- Long (200m) flight paths
- LONG irradiations (1000’s hours)

Neutron Source(s): Photonuclear/fission

- Beam current: 70 µA (avg)
- Target distances: 8-400m
- n Flux (n/cm²/s): 2×10^4 (30 m)
- γ-ray detectors: HPGe
GENESIS – 88-inch cyclotron @ Lawrence Berkeley Nat’l Lab (K140 cyclotron)

Notable capabilities:
- γ-tagged inelastic cross sections ($d^3\sigma/dE_n dE_{En'}d\Omega$)
- 22+ EJ309 neutron scintillators
- High flux (>10^{11} n/cm^2/s in Cave 0)
- Tunable spectrum/beam size (<20cm)
- FLUFFY (<1s rabbit system)
- Radioisotope production cross sections

<table>
<thead>
<tr>
<th>Neutron Source(s):</th>
<th>Deuteron breakup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam current:</td>
<td>10 μA (14-55 MeV)</td>
</tr>
<tr>
<td>Target distances</td>
<td>5-10m</td>
</tr>
<tr>
<td>n Flux (n/cm^2/s)</td>
<td>1x10^{6} (5 m)</td>
</tr>
<tr>
<td>γ-ray detectors</td>
<td>HPGe, LaBr_3, LEPS</td>
</tr>
</tbody>
</table>

UC Fee NPI@NIF grant launches UCB/LLNL collaboration: 2012

Branching out: 2014

Realizing we need to take group photos more often: 2018

This vast variety of neutron capabilities at LBNL are the result of many dozens of students’ and postdocs’ efforts through a very successful collaboration (BANG) between LBNL, LLNL, and UCB over the past eight years.