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Why are γ᾽s important?

• Here we discuss evaluations of inelastic gammas for Fe and Cr, which 
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Population and decay scheme 
depend on reaction mechanisms 
and structure properties:

• Branching ratios
• Level couplings
• Deformations
• Level densities1,2

• γ strength functions
• Spins/parities
• …

Direct correlation between neutron 
and gamma inelastic cross sections.
1G. P. A. Nobre, et al., arXiv:1909.09660, accepted at PRC 
2G. P. A. Nobre, et al., arXiv:1905.09194, accepted at Springer Nature, Proc. CNR*18



56Fe has only 5 missing branching ratios 
(< 4.5 MeV)! 

That should be good 
enough, right?



Gaps in 56Fe decay scheme can 
be relevant
▪ Reaction codes must make a decision about such decays 
▪ In many codes direct transition to g. s. is assumed 
▪ Set of prescriptions: better choices for missing transitions
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Also, uncertain spin, parities and 
DWBA deformations can be impactful
▪ Testing sensitivity to Jπ and DWBA deformations: 

• Changed level 7 from 1+ to 2+ 

• Increased def. of level 9 from 0.05 to 0.075 
• Increased def. of level 23 from 0.03 to 0.10 
• Increased def. of level 12 from 0.039 to 0.089

"6



Also, uncertain spin, parities and 
DWBA deformations can be impactful
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When there is experimental uncertainty and theoretical decisions 
have to be made, both DWBA deformations and spin/parity can be 
constrained through the inelastic gammas. 



Transitions with similar Eγ

"8

Exp. Eγ=2.5231 MeV

Trans. Eγ (MeV) Δ (keV)
Lvl 9 to 2 2.5232 0.1

Lvl 36 to 3 2.5235 0.4

Lvl 37 to 3 2.5257 2.6

Depending on the experimental resolution and on the 
proximity between γ’s from different transitions, those 
cross sections have to be added together.



Pb

Zr

Cr, Mn, Fe, Co, Ni

Ca, Ti, V

Na

Al

Structural materials tend to be 
near closed shells:

• Large fluctuations at higher 
energies

• Impact neutron leakage and 
scattering

International Nuclear Data Evaluation Network (INDEN): 
Structure Materials

➡ Important component in stainless steel. 
➡ Impact in a few specific benchmarks.



52Cr: Consistent picture
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Summary
• Ideally, γ and n cross sections should be described consistently (differential and 

integral observables): Consistent performance across different kinds of benchmarks 
(criticality, shielding, etc.) 

• Important to have most up-to-date information about level spins, parities, deformations, 
γ strength functions, branching ratios… Filling gaps in structure is very helpful. 

• When there are experimental unknowns, (n,n’γ) c.s. bring additional constraints. 
• Analysis of inelastic γ cross sections is an important tool that bridges structure and 

reactions: 56Fe, 52Cr, 238U 
• Ongoing awarded proposal involving the evaluation of inelastic γ’s for 238U (Vorabbi, 

Nobre, Brown, see L. Bernstein’s talk): Testing new branching ratios.

What do we need?
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integral observables): Consistent performance across different kinds of benchmarks 
(criticality, shielding, etc.) 

• Important to have most up-to-date information about level spins, parities, deformations, 
γ strength functions, branching ratios… Filling gaps in structure is very helpful. 

• When there are experimental unknowns, (n,n’γ) c.s. bring additional constraints. 
• Analysis of inelastic γ cross sections is an important tool that bridges structure and 

reactions: 56Fe, 52Cr, 238U 
• Ongoing awarded proposal involving the evaluation of inelastic γ’s for 238U (Vorabbi, 

Nobre, Brown, see L. Bernstein’s talk): Testing new branching ratios.

• Differential: inelastic cross sections (gamma/neutron)
• Integral: benchmarks to validate
• New experiments and/or easy access to measured 

but not readily-available data

What do we need?

Data!!
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Branching ratio for level 40
▪ Level 12, 1+ and did not have any BR changed 
▪ Level 40, 2- had missing BR, assumed an E1 transition to 12
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Effect of different γ strength function 
models


