

NNL Transport Code - MC21

Michael L. Zerkle, Senior Advisor Naval Nuclear Laboratory

WANDA-2020 Workshop, March 3-5, 2020

The Naval Nuclear Laboratory is operated for the U.S. Department of Energy by Fluor Marine Propulsion, LLC, a wholly owned subsidiary of Fluor Corporation.

MC21 Applications

- Reactor Engineering
- Reactor Physics Design
- Criticality Safety
- Radiation Shielding

MC21 Capabilities

- Complete neutron and photon physics support
- General geometry
- General tallies
- In-Line Feedback
 - Xe
 - Depletion & decay
 - T/H feedback
 - Eigenvalue search
- Neutron and photon heating
- In-Line kinetics parameters
- In-Line (α,n) capability
- MPI & OpenMP parallelization
- Variance Reduction

Nuclear Data Used

Fhermal Flux (Relative)

0.5

0.0

Neutron cross sections

- Reaction data
- Fission spectra
- Thermal neutron scattering laws (TSLs)
- Gamma production data
- Gamma cross sections
 - Reaction cross section
 - Photoneutron reactions
- (α,n) cross sections
- Decay Data
- Fission Project Yields

HB Robinson PWR Depletion

a) Beginning-of-Life (BOL)

ATR Photon Redistribution Emission

NNL Nuclear Data Needs

- Light water reactor materials
 - Zirconium, Hafnium
 - U-236 & Np-237 neutron capture
- Radiation shielding
 - Fe-56 cross sections
 - Scattering angular distributions
- Long-lived fission products (fission product credit)

•			
Mo-95	Tc-99	Ru-101	Rh-103
Cs-133	Cs-135	Pr-141	Nd-143
Nd-145	Sm147	Sm-145	Sm-150
Sm-152	Eu-153		

- Irradiation damage (DPA)
- Thermal scattering law data

TSL for heavy paraffinic oil (C. A. Manring, PHYSOR-2018)

Observation on Shielding Validation Needs

- Significant improvements have been made in shielding design and analysis methods
 - Predictability changed from factor of ~20 (historical) to ~2 (current)
 - Broad industry, not just NNL
- Improvement due to combination of new methods, computer code capabilities, and nuclear data
- Shielding validation benchmarks still relatively course
 - Based historical expectations (factor of ~20)
- Best benchmarks for nuclear data validation are set of historical Russian benchmarks
- Personal Opinion new more precise shielding benchmarks needed to support factor ~2 design uncertainties
 - Hardware cost savings in reactor design and spent fuel transport applications
 - Drive improvement of Fe-56 and other cross sections for shielding applications
- Expect multiple DOE programs, NRC, and commercial nuclear industry have similar need

ALARM-CF-FE-SHIELD-001

FUND-IPPE-VdG-MULT-TRANS-001

