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Fundamental science and applications are a partnership

= LLNL is involved in a number of applications that use nuclear physics

= These applications rely on accurate models and data
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Focus today is on neutron capture gamma
production

= Multiple applications at LLNL utilize neutron

capture

= Applications using gamma production as a signal
typically involve stable or near-stable nuclides

= Capture cross sections are highest at low
neutron energies
— High energy neutrons scatter to lower
energies before capture
— Thermal cross sections are well-known;
resonance region and higher less so
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Capture gammas are used to identify materials where
visual inspection is challenging

. i Emergency response teams
= Passive or active gency p

— Natural radioactivity Mg - —— Everything
— Neutron active interrogation e

= Known or unknown

— Verification L
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High energy: pass through shielding
GeMini Low background (S/N+)

Gamma-Ray Spectrometer (GRS) deployed on NASA's
Mercury MESSENGER: characterized surface isotopes

Three future missions planned: Psyche, Phobos, Titan

Light elements, silicates, Fe/Ni
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Gammas from capture reactions may improve our

diagnostic capabilities

= Strength correlations

— Gamma flux above 3 MeV indicative of

neutron reactions

— Can the high energy gamma rate be
correlated to neutron rate or energy?

— Need confidence that data at high
energies are correct

= Time Correlations

— Neutron correlations: multiplicity
— Gamma correlations may also show

utility

» Demonstrated with high-multiplying
systems and 2.2 MeV H capture lines

« S/N challenges

Gamma leakage > 3 MeV, g/s
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Use of these signatures would also require detector development...
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Energy deposition (gamma dose) is also a consideration

= Gamma imparts energy to
surrounding environment

= Examples:
— Personnel safety in

Iaboratory spaces Figure courtesy of K. Howley, R. Managan and J. Wasem PDC 2015
— Electromagnetic Pulse olasti
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Accurate data are needed to understand scintillation
detector response

§ 10 Photon evaporation model (Geant4.10.3) —
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Data needs cover a range of energies and isotopes over
the applications considered

= Most applications start with higher-energy neutrons that scatter down to
low energy and are captured
— We need good models for scatter and capture
— We are sensitive to a range of neutron energies above thermal
* Cross sections can drop quickly, and data tends to be sparse

= Most applications using gamma production from captures involve stable or
near-stable isotopes
— But otherwise we are interested in pretty much everything...

= Both the cross-section and the photon decay pathway are of interest

= We rely on accurate data for input to applications-relevant simulations
— Validation benchmarks would be helpful to test data libraries and
simulations
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